Vol. 7 Núm. 12 (2018)
Articles

Diseño de la banca de clientes en el comportamiento en los medios de comunicación social

Rohollah Samiei
Department of Management, Islamic Azad University, Aliabad Katul, Iran.
Biografía del autor/a

Assistant Professor, Department of Management, Islamic Azad University, Aliabad Katul Branch, Aliabad Katul, Iran.

Foad Kouhzadi
Department of Management, Islamic Azad University, Bukan, Iran.
Biografía del autor/a

Department of Management and Accounting, Islamic Azad University, Bukan Branch, Bukan,Iran

Afshin MirHesami
Department of Management, Islamic Azad University, Bukan, Iran.
Biografía del autor/a

Department of Management and Accounting, Islamic Azad University, Bukan Branch, Bukan,Iran.

Mehdi Allah Dadi
Department of Management and Accounting, Islamic Azad University, Sanandaj, Iran
Biografía del autor/a

Department of Management and Accounting, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran

Publicado 2018-02-27

Palabras clave

  • comportamiento del cliente, redes sociales, método de extracción de teoría, base de datos, minería de datos

Cómo citar

Samiei, R., Kouhzadi, F., MirHesami, A., & Dadi, M. A. (2018). Diseño de la banca de clientes en el comportamiento en los medios de comunicación social. Amazonia Investiga, 7(12), 203–209. Recuperado a partir de https://amazoniainvestiga.info/index.php/amazonia/article/view/591

Resumen

Esta investigación cualitativa se realizó mediante la minería del comportamiento del cliente mediante el uso de la teoría y el método de minería de base y base de datos. Por esta razón, se aplicaron 15 teorías del cliente a través de Twitter, telegramas y entrevistas con 10 gerentes de bancos de la provincia de Kurdistán. La recopilación de los primeros temas se realizó durante el proceso de codificación y se obtuvieron las categorías. Luego, en el paso de codificación de la base, se determinó el vínculo entre los paradigmas de codificación; en el paso de codificación selectiva, se explican todos los paradigmas de codificación. En comparación con investigaciones anteriores, se puede encontrar que el modelo actual elimina defectos del modelo anterior y ofrece una imagen completa de términos efectivos sobre el comportamiento del cliente bancario y, finalmente, ofrece un modelo de comportamiento del cliente en bancos privados y gubernamentales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abbasolu, M. A., Gedik, B., and Ferhatosmanolu, H. "Aggregate profile clustering for telco analytics,"Proceedings of the VLDB Endowment (6:12) 2013, pp 1234-1237.

And emotions on behavioral intentions”, Journal of Services Marketing, 22 (4), pp. 303- 315.

Andrews, M., Luo, X., Fang, Z. and Ghose, A. (2015), “Mobile ad effectiveness: hyper- contextual targeting with crowdedness”, Marketing Science

Baker. A, Ricciardi.k The Psychology of Financial Planning and Investing.wiley. p23

Bayus, B.L. (2013), “Crowdsourcing new product ideas over time: an analysis of the Dell IdeaStorm community”, Management Science, Vol. 59 No. 1, pp. 226-244.

Bigne, J. E., Mattila, A. S. & Andreu, L. (2008). “The impact of experiential consumption cognitions

Blackwell, R.D., Miniard, P.W. and Engel, J.F. (2005), Consumer Behavior, 10th ed., South- Western College Publications.

Chan, K.W., Li, S.Y. and Zhu, J.J. (2015), “Fostering customer ideation in crowdsourcing community: the role of peer-to-peer and peer- to-firm interactions”, Journal of Interactive Marketing, Vol. 31, pp. 42-62. Creswell, J. W. & Miller, D. L. (2000). Determining Validity in Qualitative Inquiry,Theory into Practice, 39(3): 124-131.

De Valck, K. (2007). The war of the eTribes: Online conflicts and communal consumption. In B. Cova, R. Kozinets, & A. Shankar (Eds.), Consumer tribes (pp. 260_274). Oxford: Butterworth-Heinemann

Erevelles, S., Fukawa, N. and Swayne, L. (2015), “Bid data consumer analytics and the transformation of marketing”,

Goulding, C. (2005). Grounded theory, ethnography and phenomenology: A comparative analysis of three qualitative strategies for marketing research. European Journal of Marketing, 39(3), 294_308.

Handelman, J. (1998). Ensouling consumption: A netnographic exploration of the meaning of boycotting behavior. Advances in Consumer Research, 25(1),475_480.

King, R.A., Racherla, P. Bush, V.D. (2014), “What we know and don’t know about online word-of-mouth: a review and synthesis of the literature”, Journal of Interactive Marketing, Vol. 28 No. 3, pp. 167-183

Klapdor, S., Anderl, E.A., von Wangenheim, F. and Schumann, J.H. (2014), “Finding the right words: the influence of keyword characteristics on performance of paid search campaigns”, Journal of Interactive Marketing, Vol. 28 No. 4, pp. 285-301.

Knight, Frank H. 1921. Risk, Uncertainty, and Profit. Boston, MA: Houghton Mifflin.

Knudsen and Kjeldgaard (2014), ONLINE RECEPTION ANALYSIS: BIG DATA IN QUALITATIVE MARKETING RESEARCH, Research in Consumer Behavior, Volume 16, 217_242

Kozinets, R. V. (2009). Netnography: Doing ethnographic research online. Los Angeles, CA:Sage.

Malthouse, E.C. (2007), “Mining for trigger events with survival analysis”, Data Mining and Knowledge Discovery, Vol. 15 No. 3, pp. 383- 402.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H.(2011).
Big data: The next frontier for innovation, competition, and productivity. Sydney: McKinsey Global Institute.

Mayer-Scho¨ nberger, V., & Cukier, K. (2013). Big data. Boston, MA: Houghton Mifflin Harcourt.

Muniz, A. M., Jr., & O’Guinn, T. C. (2001). Brand community. Journal of Consumer Research, 27(4), 412_432.

Murray, K.B. and Häubl, G. (2009), “Personalization without interrogation: towards more effective interactions between

Ngai, E. W., Xiu, L., and Chau, D. C. (2009)"Application of data mining techniques in customer relationship management: A literature review and classification," Expert systems with applications (36:2) pp 2592-2602.

Normandeau, K. (2013), “Beyond volume, variety and velocity is the issue of big data veracity”, Inside BigData, available at: http://insidebigdata.com/2013/09/12/beyondvol ume- variety-velocity-issue-big-data-veracity/ (accessed 15 April 2015).

Rokka, J., & Moisander, J. (2009). Environmental dialogue in online communities: Negotiating ecological citizenship among global travelers. International Journal of Consumer Studies, 33(2), 199_205. doi:10.1111/j.1470- 6431.2009.00759.x