Capacitación de los agricultores sobre la gestión del agua para gestionar las sequías y la crisis del agua en Irán

Autores/as

  • Azizi Baharak University of Applied Science and Technology, Tehran, Iran

Palabras clave:

Polímero hidrófilo; Intervalo de riego; Textura de la tierra; Lixiviación De Nitrógeno, Panicum

Resumen

Para investigar el requerimiento de agua de las plantas, especialmente en áreas áridas y desérticas y la pobreza de la mayoría de los suelos en estas áreas, llevamos a cabo un experimento para estudiar el efecto del polímero hidrofílico de absorbancia en Panicum antidotale Retz. Con su efecto sobre la lixiviación con nitrógeno en tres tipos de suelos ligeros, medios y pesados en intervalos de riego de 4, 8 y 12 días. La comparación de los resultados con el tratamiento de control mostró que la aplicación de polímero que se llevó a cabo al 0,3% tiene el mayor efecto sobre el crecimiento y la producción de materia seca de Panicum antidotale Retz. El efecto simple de los tratamientos con polímeros, el intervalo de riego y la textura del suelo en seco La producción de materia, la altura de la planta y la lixiviación de nitrógeno del suelo fueron importantes en este estudio. Además, los efectos de interacción del riego x la textura del suelo en la producción de materia seca y la lixiviación con nitrógeno mostraron una diferencia significativa. De modo que la mayor cantidad de materia seca de la planta con 7,2 g se obtuvo a partir de un tratamiento medio con polímero en un intervalo de riego de 4 días. En el tratamiento de control sin el polímero, las plantas se destruyeron antes de la cosecha en el intervalo de riego de 12 días. El efecto de los tratamientos en la altura de Panicum indicó que la adición de polímero al suelo aumentaría la altura del Panicum además de aumentar la producción de materia seca. Además, el efecto del polímero simple en el drenaje de agua de riego indicó que la tasa de lixiviación de nitrógeno de la media de 880 mg N/ I de en el control disminuye a aproximadamente 550 mg N / I por el polímero. Por lo tanto, se puede concluir que la aplicación de polímeros no solo influye en la humedad del suelo, sino que también afecta el fortalecimiento del suelo y la disminución de la lixiviación de nitrógeno, especialmente en suelos pobres del desierto.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Azizi Baharak, University of Applied Science and Technology, Tehran, Iran

Ph.D. Agricultural Extension and Education, Assistant Professor ,University of Applied Science and Technology, Tehran, Iran

Citas

AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T., Lund, J., 2015. Water and climate: recognize anthropogenic drought. Nature 524, 409–411.

Ashraf Vaghefi, S., Mousavi, S. J., Abbaspour, K. C., Srinivasan, R., & Yang, H. (2014). Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrological Processes, 28(4), 2018-2032.

Central Organization of Rural Cooperatives of Iran http://www.corc.ir/portal/Home/Default.aspx?CategoryID=d0718d19-fa6e-4ad5-b87c-649f0a0c8239

Deng, X. P., Shan, L., Zhang, H., & Turner, N. C. (2006). Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural water management, 80(1), 23-40.

Farahmand, A, AghaKouchak, A, 2015. A generalized framework for deriving non- parametric standardized drought indicators. Adv. Water Resour. 76, 140–145.

Fathian, F., Morid, S., & Kahya, E. (2015). Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology, 119(3-4), 443-464.

Food Secure Iran, Safeguarding Its Natural Resources http://www.fao.org/iran/en/

Foster, T., Brozovi?, N., Butler, A. P., Neale, C. M. U., Raes, D., Steduto, P., ... & Hsiao, T. C. (2017). AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management, 181, 18-22.

Francesca, T, Mannocchi, F, Vergni, L, 2015. Severity-duration-frequency curves in the mitigation of drought impact: an agricultural case study. Nat. Hazards 65, 1863–1881.

Gohari, A., Mirchi, A., & Madani, K. (2017). System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management, 31(5), 1413-1434.

Halwatura, D, Lechner, AM, Arnold, S, 2015. Drought severity–duration–frequency curves: a foundation for risk assessment and planning tool for ecosystem es- tablishment in post-mining landscapes. Hydrol. Earth Syst. Sci. 19, 1069–1091.

Harremoes, P, Topsoe, F, 2001. Maximum entropy fundamentals. Entropy 3, 191–226.

Hayes, MJ, Wilhelmi, OV , Knutson, CL , 2004. Reducing drought risk: bridging theory and practic. Nat. Hazards Revi. 5, 106–113.

Hisdal, H., Stahl, K., Tallaksen, L. M., & Demuth, S. (2001). Have streamflow droughts in Europe become more severe or frequent? International Journal of Climatology, 21(3), 317-333.

Hosseinzadeh Talaee, P., Tabari, H., & Sobhan Ardakani, S. (2014). Hydrological drought in the west of Iran and possible association with large?scale atmospheric circulation patterns. Hydrological Processes, 28(3), 764-773.

Iglesias, A., & Garrote, L. (2015). Adaptation strategies for agricultural water management under climate change in Europe. Agricultural water management, 155, 113-124.

Joetzjer, E, Douville, H, Delire, C, Ciais, P, Decharme, B, Tyteca, S, 2013. Hydro- logic benchmarking of meteorological drought indices at interannual to climate change timescales: a case study over the amazon and Mississippi River basins. Hydrol. Earth Syst. Sci. 17, 4 885–4 895.

Lei, T, Wu, J, Li, X, Geng, G, Shao, C, Zhou, H, Wang, Q, Liu, L, 2015. A new frame- work for evaluating the impacts of drought on net primary productivity of grassland. Sci. Total, Environ. 536, 161–172.

Li, Y, Gu, W, Cui, W, Chang, Z , Xu, Y , 2015. Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Bei- jing, China. Nat. Hazards 77 (2), 1289–1303.

Madani, K. (2014). Water management in Iran: what is causing the looming crisis? Journal of environmental studies and sciences, 4(4), 315-328.

Mahmoudzadeh, H., Mahmoudzadeh, H., Afshar, M. H., & Yousefi, S. (2016). Applying First-Order Markov Chains and SPI Drought Index to Monitor and Forecast Drought in West Azerbaijan Province of Iran. International Journal Of Geo Science and Environmental Planning, 1(2), 44-53.

Mahsafar, H., Najarchi, M., Najafizadeh, M. M., & Hezaveh, M. M. (2017). Conjunctive effect of water productivity and cultivation pattern on agricultural water management. Water Science and Technology: Water Supply, ws2017054.

Mehran, A , Mazdiyasni, O , AghaKouchak, A , 2015. A hybrid framework for assessing socioeconomic drought: linking climate variability, local resilience, and demand. J. Geophys. Res. –Atmos. 120 (15), 7520–7533.

Modaresi Rad, A , Khalili, D , 2015. Appropriateness of clustered raingauge stations for spatio-temporal meteorological drought applications. Water Resour. Manag. 29, 4157–4171.

Modaresi Rad, A, Khalili, D, Kamgar-Haghighi, AA, Zand-Parsa, Sh, Banimahd, SA, 2016. Assessment of seasonal characteristics of streamflow droughts un- der semi-arid conditions. Nat. Hazards 1–24.

Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M. A., & Kijne, J. (2010). Improving agricultural water productivity: between optimism and caution. Agricultural Water Management, 97(4), 528-535.
Montakab, S. Irrigation Management in Ancient Iran: A Survey of Sasanian Water Politics.

Motiee, H., Monouchehri, G. H., & Tabatabai, M. R. M. (2001). Water crisis in Iran, codification and strategies in urban water. In Proceedings of the Workshops held at the UNESCO Symposium, Technical documents in Hydrology No. 45, Marseille, June 2001 (pp. 55-62).

Nazari, M., Razzaghi, F., Khalili, D., Kamgar-Haghighi, A. A., & Zarandi, S. M. (2017). Regionalization of dryland farming potential as influenced by droughts in western Iran. International Journal of Plant Production, 11(2).

Nosrati, K., Laaha, G., Sharifnia, S. A., & Rahimi, M. (2015). Regional low flow analysis in Sefidrood Drainage Basin, Iran using principal component regression. Hydrology Research, 46(1), 121-135.

Orlowsky, B., & Seneviratne, S. I. (2012). Global changes in extreme events: regional and seasonal dimension. Climatic Change, 110(3), 669-696.

Qin, S., Zhang, J., Dai, H., Wang, D., & Li, D. (2014). Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agricultural Water Management, 131, 87-94.

Rad, A. M., Khalili, D., Kamgar-Haghighi, A. A., Zand-Parsa, S., & Banimahd, S. A. (2016). Assessment of seasonal characteristics of streamflow droughts under semiarid conditions. Natural Hazards, 82(3), 1541-1564.

Rijsberman, F. R. (2006). Water scarcity: fact or fiction?. Agricultural water management, 80(1), 5-22.

Saadat, S., Khalili, D., Kamgar-Haghighi, A. A., & Zand-Parsa, S. (2013). Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region. Natural hazards, 69(3), 1697-1720.

Sarhadi, A., & Heydarizadeh, M. (2014). Regional frequency analysis and spatial pattern characterization of dry spells in Iran. International Journal of Climatology, 34(3), 835-848
Soil Conservation and Watershed Management Research Institute (SCWMRI) https://www.scwmri.ac.ir/

Sung, J. H., & Chung, E. S. (2014). Development of streamflow drought severity–duration–frequency curves using the threshold level method. Hydrology and Earth System Sciences, 18(9), 3341-3351.

Vaghefi, S. A., Mousavi, S. J., Abbaspour, K. C., Srinivasan, R., & Arnold, J. R. (2015). Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran. Regional environmental change, 15(3), 475-484.

Valipour, M. (2015). Future of agricultural water management in Africa. Archives of Agronomy and Soil Science, 61(7), 907-927.

Valipour, M. (2015). Land use policy and agricultural water management of the previous half of century in Africa. Applied Water Science, 5(4), 367-395.

Valipour, M., Ziatabar Ahmadi, M., Raeini-Sarjaz, M., Gholami Sefidkouhi, M. A., Shahnazari, A., Fazlola, R., & Darzi-Naftchali, A. (2015). Agricultural water management in the world during past half century. Archives of Agronomy and Soil Science, 61(5), 657-678.

Vicente-Serrano, S. M., Zabalza-Martínez, J., Borràs, G., López-Moreno, J. I., Pla, E., Pascual, D., ... & Peña-Gallardo, M. (2017). Effect of reservoirs on streamflow and river regimes in a heavily regulated river basin of Northeast Spain. Catena, 149, 727-741.

Williams, M. R., King, K. W., & Fausey, N. R. (2015). Drainage water management effects on tile discharge and water quality. Agricultural Water Management, 148, 43-51.

Ye, X., Li, X., Xu, C. Y., & Zhang, Q. (2016). Similarity, difference and correlation of meteorological and hydrological drought indices in a humid climate region–the Poyang Lake catchment in China. Hydrology Research, 47(6), 1211-1223.

Zamani, R., Mirabbasi, R., Abdollahi, S., & Jhajharia, D. (2017). Streamflow trend analysis by considering autocorrelation structure, long-term persistence, and Hurst coefficient in a semi-arid region of Iran. Theoretical and Applied Climatology, 129(1-2), 33-45.

Descargas

Publicado

2018-08-30

Cómo citar

Baharak, A. (2018). Capacitación de los agricultores sobre la gestión del agua para gestionar las sequías y la crisis del agua en Irán. Amazonia Investiga, 7(15), 234–242. Recuperado a partir de https://amazoniainvestiga.info/index.php/amazonia/article/view/453

Número

Sección

Articles