v. 14 n. 86 (2025): Edição Contínua (Fevereiro – Dezembro de 2025)
Articles

Exploring university mathematics professors’ perceptions and use of GenAI: a conceptual fields approach

Denilsón Andrés Silgado-Tuñón
Universidad Autónoma de Zacatecas, México.
Biografia do Autor

Maestro-Investigador en Matemática Educativa, Universidad Autónoma de Zacatecas, México.

Patricia Sureda
Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Argentina.
Biografia do Autor

Doctora-Investigadora del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Núcleo de Investigación en Educación Matemática (NIEM-CIC-UNCPBA), Instituto Superior de Ingeniería del Software (ISISTAN/CONICET-UNCPBA), Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Argentina.

José Iván López-Flores
Universidad Autónoma de Zacatecas, Zacatecas, México.
Biografia do Autor

Doctor-Investigador de la Unidad Académica de Matemáticas de la Universidad Autónoma de Zacatecas, Zacatecas, México.

Emmanuel Magallanes
Universidad Politécnica de Zacatecas, México.
Biografia do Autor

Doctor-Investigador de la Universidad Politécnica de Zacatecas, Ingeniería Industrial, Plan de Pardillo s/n., Parque Industrial, Fresnillo, México.

Publicado 2025-10-20

Palavras-chave

  • Artificial intelligence,
  • Educational technology,
  • Teacher education,
  • Higher education,
  • Cognition,
  • Conceptual Fields
  • ...Mais
    Menos

Como Citar

Silgado-Tuñón, D. A., Sureda, P., López-Flores, J. I., & Magallanes, E. (2025). Exploring university mathematics professors’ perceptions and use of GenAI: a conceptual fields approach. Amazonia Investiga, 14(86), 250–263. https://doi.org/10.34069/AI/2025.86.02.19

Resumo

Generative Artificial Intelligence (GenAI) is rapidly transforming higher education, challenging traditional pedagogical norms, and prompting a re-evaluation of teaching and learning practices. This study analyzes the operational invariants guiding university mathematics professors' action schemes when interacting with GenAI, using the Theory of Conceptual Fields (TCF) as a theoretical framework. Semi-structured interviews were conducted with ten active university mathematics professors, focusing on the eight dimensions of Technological Pedagogical Content Knowledge (TPACK). Transcriptions were analyzed to infer enacted theorems (ETs), classified into eight thematic categories: general functionality, prompt construction, knowledge validation, academic applications, ethics and regulation, relationship with teaching and learning, teacher knowledge and use, and limitations and risks. Results revealed a predominantly pragmatic usage scheme, with GenAI perceived as a search engine, process optimizer, and code generator. However, contradictory ETs indicate that the conceptual field is still under construction. Teachers primarily use GenAI for text editing, content generation, and idea organization, but its direct classroom use remains limited. Epistemological ambivalence exists regarding Gen's authority, with concerns about errors. Ethical and regulatory issues are not yet central. Findings highlight the need for critical, reflective, and context-sensitive appropriation of GenAI in university mathematics education, supported by professional development and institutional policy.

Downloads

Não há dados estatísticos.

Referências

  1. Alshamy, A., Al-Harthi, A. S. A., & Abdullah, S. (2025). Perceptions of Generative AI Tools in Higher Education: Insights from Students and Academics at Sultan Qaboos University. Education Sciences, 15(4), 501. https://doi.org/10.3390/educsci15040501
  2. Cabellos, B., de Aldama, C., & Pozo, J-I. (2024). University teachers’ beliefs about the use of generative artificial intelligence for teaching and learning. Frontiers in Psychology, 15, 1468900. https://doi.org/10.3389/fpsyg.2024.1468900
  3. Corica, A., Parra, V., Sureda, P., Schiaffino, S., & Godoy, D. (2024). Fractal de Koch: análisis de respuestas de IA generativa y un profesor de matemática. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología (TE&ET), 89-99. https://doi.org/10.24215/18509959.37.e8
  4. Kang, Y. J. (2024). A study on the didactical application of ChatGPT for mathematical word problem solving. Mathematical Education Communications, 38(1), 49-67. https://doi.org/10.7468/jksmee.2024.38.1.49
  5. Kwon, O. N., Oh, S. J., Yoon, J. E., Lee, K. Y., Shin, B. C., & Jeong, W. (2023). Analyzing mathematical performances of ChatGPT: Focusing on the solution of national assessment of educational achievement and the college scholastic ability test. Mathematical Education, 37(2), 233-256. https://doi.org/10.7468/jksmee.2023.37.2.233
  6. Larico-Hanco, R. (2024). Impacto de la Inteligencia Artificial Generativa Chatgpt en la Enseñanza Universitaria. Em SciELO Preprints. https://doi.org/10.1590/SciELOPreprints.9332
  7. Lee, G. M., Lee, Y. J., & Kim, H. J. (2023). Analysis of adaptive learning in Korea's AI mathematics learning platforms. Journal of the Korean School Mathematics Society, 26(3), 245-268. https://doi.org/10.30807/ksms.2023.26.3.004
  8. Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College Record, 108(6), 1017-1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
  9. Mishra, P., Warr, M., & Islam, I. (2023). TPACK in the age of ChatGPT and Generative AI. Journal of Digital Learning in Teacher Education, 39(4), 235-251. https://doi.org/10.1080/21532974.2023.2247480
  10. Parra, V., Sureda, P., Corica, A., Schiaffino, S., & Godoy, D. (2024a). Can generative AI solve Geometry problems? Strengths and weaknesses of LLMs for geometric reasoning in Spanish. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 65-74. https://doi.org/10.9781/ijimai.2024.02.009
  11. Parra, V., Sureda, P., & Corica, A. (2024b). Teoría de Situaciones Didácticas e Inteligencia Artificial: diseño de propuestas para enseñar las nociones de muestra y población en educación secundaria. Uno: Revista de Didáctica de Las Matemáticas, (104), 43-50. http://hdl.handle.net/11336/241263
  12. Ruediger, D., Blankstein, M., & Love, S. J. (2024). Generative AI and Postsecondary Instructional Practices: Findings from a National Survey of Instructors. (Vol. 320892). Ithaka S+R. https://doi.org/10.18665/sr.320892
  13. Silgado-Tuñón, D. A., & López-Flores, J. I. (2025a). Inteligencia Artificial Generativa en la Educación Superior: una Revisión Sistemática. Unión - Revista Iberoamericana de Educación Matemática, 21(73). Recuperado a partir de https://union.fespm.es/index.php/UNION/article/view/1709
  14. Silgado-Tuñón, D. A., & López-Flores, J. I. (2025b). Inteligencia Artificial Generativa en el aula: ¿aliada o amenaza para la enseñanza de las matemáticas? Revista Electrónica Tecnologías Emergentes en la Educación, 2(1), 53-66. https://doi.org/10.71713/retee.v2i1.3512
  15. Sureda, P., & Otero, M. (2025). Lo exponencial en la Escuela Secundaria de Adultos: análisis de invariantes operatorios. Educación matemática, 37(1), 101-126. https://doi.org/10.24844/EM3701.04
  16. Sureda, P., Corica, A., Parra, V., Godoy, D., & Schiaffino, S. (2024). La evaluación en educación matemática: aportes de chatbots y futuros profesores de matemática. Edutec, Revista Electrónica De Tecnología Educativa, (89), 64-83. https://doi.org/10.21556/edutec.2024.89.3243
  17. Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(23), 133-170. https://acortar.link/MW7yqs
  18. Vergnaud, G. (2007a). Forma operatoria y forma predicativa del conocimiento, en M. R. Otero, I. Elichirebehety, M. Fanaro, A. Corica y P. Sureda (eds.), Primer Encuentro Nacional sobre Enseñanza de la Matemática, Tandil, Buenos Aires, Argentina.
  19. Vergnaud, G. (2007b). ¿En qué sentido la teoría de los campos conceptuales puede ayudarnos para facilitar aprendizaje significativo? Investigações em Ensino de Ciências, 12(2), 285-302. https://ienci.if.ufrgs.br/index.php/ienci/article/view/475
  20. Vergnaud, G. (2013). Pourquoi la théorie des champs conceptuels? Journal for the Study of Education and Development, 36(2), 131-161. https://doi.org/10.1174/021037013806196283