Vol. 14 No. 86 (2025): Continuous Edition (February – December 2025)
Articles

Epiisopiloturin–Hydroxypropyl-β-Cyclodextrin inclusion complexes: preparation, characterization, and application in neglected diseases

Karolynne Rodrigues de Melo
Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.
Author Biography

MSc, Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.

Maria Vitória Barbosa dos Santos
Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.
Author Biography

Undergraduate, Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.

Débora Vitória Firmino de Lima
Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.
Author Biography

B.Sc, Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.

Cybelly Marques de Melo
Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.
Author Biography

PhD, Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.

Pedro José Rolim Neto
Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.
Author Biography

PhD, Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.

Rosali Maria Ferreira da Silva
Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.
Author Biography

PhD, Federal University of Pernambuco (UFPE), Department of Pharmacy, Brazil.

Published 2025-10-04

Keywords

  • Epiisopiloturin,
  • Cyclodextrin,
  • Inclusion complex,
  • Increased solubility

How to Cite

Rodrigues de Melo, K., Barbosa dos Santos, M. V., Firmino de Lima, D. V., Marques de Melo, C., Rolim Neto, P. J., & Ferreira da Silva, R. M. (2025). Epiisopiloturin–Hydroxypropyl-β-Cyclodextrin inclusion complexes: preparation, characterization, and application in neglected diseases. Amazonia Investiga, 14(86), 215–225. https://doi.org/10.34069/AI/2025.86.02.16

Abstract

Context: Pilocarpus microphyllus (Jaborandi) is widely used for extracting pilocarpine, generating biomass rich in secondary metabolites. Among these, epiisopiloturin (EPI) exhibits potential against neglected diseases, in addition to anti-inflammatory and antinociceptive effects. However, its poor aqueous solubility limits its pharmaceutical application. Objective: To enhance the solubility of EPI by forming an inclusion complex with hydroxypropyl-β-cyclodextrin (HPβCD) using the freeze-drying technique. Methods: A phase solubility study was conducted to determine the stability constant and stoichiometry. The inclusion complex was prepared via lyophilization and characterized by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and in vitro dissolution testing. Results: Characterization confirmed the formation of the EPI:HPβCD complex, indicating strong interactions between components. The DSC thermogram showed the disappearance of the EPI melting peak, supported by FTIR results, suggesting successful complexation. XRD patterns revealed an amorphous structure. In vitro dissolution demonstrated a marked increase in solubility: 100% of the complexed EPI dissolved within 5 minutes, compared to only 19% of the free compound. Conclusion: Complexation with HPβCD significantly improved the solubility of EPI, reinforcing its potential for development into an innovative pharmaceutical formulation for the treatment of neglected diseases.

Downloads

Download data is not yet available.

References

  1. Agência Nacional de Vigilância Sanitária. (2010). Farmacopeia Brasileira (5ª ed.). Brasília, DF: Anvisa. Disponível em: https://acortar.link/OJwB94
  2. Badr-Eldin, S. M., Elkheshen, S. A., & Ghorab, M. M. (2008). Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: Preparation and in-vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 70(3), 819-827. https://doi.org/10.1016/j.ejpb.2008.06.024
  3. Bayomi, M. A., Abanumay, K. A., & Al-Angary, A. A. (2002). Effect of inclusion complexation with cyclodextrins on photostability of nifedipine in solid state. International journal of pharmaceutics, 243(1-2), 107-117. https://doi.org/10.1016/s0378-5173(02)00263-6
  4. Bhalani, D. V., Nutan, B., Kumar, A., & Singh Chandel, A. K. (2022). Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2055. https://doi.org/10.3390/biomedicines10092055
  5. Castillo, J. A., Palomo-Canales, J., Garcia, J. J., Lastres, J. L., Bolas, F., & Torrado, J. J. (1999). Preparation and characterization of albendazole β-cyclodextrin complexes. Drug development and industrial pharmacy, 25(12), 1241-1248. https://doi.org/10.1081/ddc-100102294
  6. Chatelain, E., & Ioset, J.-R. (2011). Drug discovery and development for neglected diseases: The DNDi model. Drug Design, Development and Therapy, 5, 175–181. https://doi.org/10.2147/DDDT.S16381
  7. Conteh, L., Engels, T., & Molyneux, D. H. (2010). Socioeconomic aspects of neglected tropical diseases. The Lancet, 375(9710), 239-247. https://doi.org/10.1016/S0140-6736(09)61422-7
  8. Cunha-Filho, M. S. S., & Sá-Barreto, L. C. L. (2008). Cyclodextrin: Important pharmaceutical excipient. Latin American Journal of Pharmacy, 27(4), 629-636. https://doi.org/10.54139/revinguc.v27i3.146
  9. Del Valle, E. M. M. (2004). Cyclodextrins and their uses: A review. Process Biochemistry, 39(9), 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9
  10. Dias, L. C., Dessoy, M. A., Guido, R. V., Oliva, G., & Andricopulo, A. D. (2013). Doenças tropicais negligenciadas: uma nova era de desafios e oportunidades. Química Nova, 36, 1552-1556. https://doi.org/10.1590/S0100-40422013001000011
  11. dos Santos, G. J. F. L. (2012). Ensaio de Dissolução das Formas Farmacêuticas: Aplicações na Investigação Científica e na Indústria Farmacêutica (Master's tesis), Universidade Fernando Pessoa Portugal.
  12. Figueiras, A., Carvalho, R. A., Ribeiro, L., Torres-Labandeira, J. J., & Veiga, F. J. (2007). Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 67(2), 531-539. https://doi.org/10.1016/j.ejpb.2007.03.005
  13. Guimarães, M. A. (2018). Avaliação terapêutica in vivo dos alcaloides epiisopiloturina e epiisopilosina extraídos de Pilocarpus microphyllus para esquistossomose. (Dissertação de Mestrado). Universidade Federal de Pernambuco, Recife.
  14. Haimhoffer, Á., Rusznyák, Á., Réti-Nagy, K., Vasvári, G., Váradi, J., Vecsernyés, M., Bácskay, I., Fehér, P., Ujhelyi, Z., & Fenyvesi, F. (2019). Cyclodextrins in Drug Delivery Systems and Their Effects on Biological Barriers. Pharmaceutical Science, 87(4), 33. https://doi.org/10.3390/scipharm87040033
  15. Higuchi, T., & Connors, K. A. (1965). Phase-solubility techniques. Advances in Analytical Chemistry and Instrumentation, 4, 117–212. https://www.scienceopen.com/document?vid=76f1d8c7-413c-40f2-aa7f-227482d5d1ad
  16. Kumar, S. K., Sushma, M., & Raju, P. Y. (2013). Dissolution enhancement of poorly soluble drugs by using complexation technique-a review. Journal of Pharmaceutical Sciences and Research, 5(5), 120. https://acortar.link/Q1kWZU
  17. Melo, C. M. de. (2015). Caracterização físico-química do protótipo epiisopiloturina e incremento do seu perfil de dissolução através da obtenção de complexos de inclusão (Dissertação de mestrado, Universidade Federal de Pernambuco, Programa de Pós-Graduação em Inovação Terapêutica). Universidade Federal de Pernambuco. https://repositorio.ufpe.br/handle/123456789/24295
  18. Mendhe, A. A., Kharwade, R. S., & Mahajan, U. N. (2016). Dissolution enhancement of poorly water-soluble drug by cyclodextrins inclusion complexation. Int J Appl Pharm, 8(4), 60-65. https://acortar.link/bysvBN
  19. Mura, P. (2015). Analytical techniques for characterization of cyclodextrin complexes in solution and solid state: A review. Journal of Pharmaceutical and Biomedical Analysis, 113, 226–238. https://doi.org/10.1016/j.jpba.2015.01.058
  20. Oliveira, E. A., Labra, M. E., & Bermudez, J. (2006). A produção pública de medicamentos no Brasil: uma visão geral. Cadernos de Saúde Pública, 22(11), 2379-2389. https://doi.org/10.1590/S0102-311X2006001100012
  21. Rashid, M., Malik, M. Y., Singh, S. K., Chaturvedi, S., Gayen, J. R., & Wahajuddin, M. (2019). Bioavailability enhancement of poorly soluble drugs: the holy grail in pharma industry. Current pharmaceutical design, 25(9), 987-1020. https://doi.org/10.2174/1381612825666190130110653
  22. Sarabia-Vallejo, Á., Caja, M. d. M., Olives, A. I., Martín, M. A., & Menéndez, J. C. (2023). Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics, 15(9), 2345. https://doi.org/10.3390/pharmaceutics15092345
  23. Sathigari, S., Chadha, G., Lee, Y. P., Wright, N., Parsons, D. L., Rangari, V. K., ... & Babu, R. J. (2009). Physicochemical characterization of efavirenz–cyclodextrin inclusion complexes. Aaps Pharmscitech, 10(1), 81-87. https://doi.org/10.1208/s12249-008-9180-3
  24. Silva, R. R., Amorim, C. A. D. C., Lima, M. D. C. A., Rabello, M. M., Hernandes, M. Z., Rêgo, M. J. B. D. M., ... & Andrade, C. A. S. D. (2023). Development of inclusion complex based on cyclodextrin and oxazolidine derivative. Brazilian Journal of Pharmaceutical Sciences, 59, e22009. https://doi.org/10.1590/s2175-97902023e22009
  25. Sobrinho, J. L. S., Soares, M. F. D. L. R., Labandeira, J. J. T., Alves, L. D. S., & Rolim Neto, P. J. (2011). Improving the solubility of the antichagasic drug benznidazole through formation of inclusion complexes with cyclodextrins. Química Nova, 34(9), 1534–1538. https://doi.org/10.1590/S0100-40422011000900010
  26. Sousa, I. L., Porto, C. M., Bassani, K. C., Martins, M. H., Pessine, F. B., & Morgon, N. H. (2020). Preparation and characterization of the β-cyclodextrin inclusion complex with benzbromarone. Journal of the Brazilian Chemical Society, 31(8), 1585-1596. https://doi.org/10.21577/0103-5053.20200044
  27. Tiwari, G., Tiwari, R., & Rai, A. K. (2010). Cyclodextrins in delivery systems: Applications. Journal of Pharmacy and Bioallied Sciences, 2(2), 72-79. https://doi.org/10.4103/0975-7406.67003
  28. Venturini, C. D. G., Nicolini, J., Machado, C., & Machado, V. G. (2008). Propriedades e aplicações recentes das ciclodextrinas. Química Nova, 31, 360-368. https://doi.org/10.1590/S0100-40422008000200032
  29. Veras LM, Guimaraes MA, Campelo YD, Vieira MM, Nascimento C, Lima DF, ... & Moraes, J. (2012). Activity of epiisopiloturine against Schistosoma mansoni. Current Medicinal Chemistry, 19(13), 2051-2058. https://doi.org/10.2174/092986712800167347
  30. Véras, L. M., Cunha, V. R., Lima, F. C., Guimarães, M. A., Vieira, M. M., Campelo, Y. D., ... & de Souza de Almeida Leite, J. R. (2013). Industrial scale isolation, structural and spectroscopic characterization of epiisopiloturine from Pilocarpus microphyllus Stapf leaves: A promising alkaloid against schistosomiasis. PLoS One, 8(6), e66702. https://doi.org/10.1371/journal.pone.0066702
  31. Vieira, A. C. Q. de M. (2017). Caracterização e incremento da cinética de dissolução do protótipo epiisopiloturina: uma abordagem físico-química (Tese de doutorado), Universidade Federal de Pernambuco, Centro de Ciências Biológicas.
  32. Wangsawangrung, N., Choipang, C., Chaiarwut, S., Ekabutr, P., Suwantong, O., Chuysinuan, P., Techasakul, S., & Supaphol, P. (2022). Quercetin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex-Loaded Hydrogels for Accelerated Wound Healing. Gels, 8(9), 573. https://doi.org/10.3390/gels8090573