Published 2025-10-04
Keywords
- Epiisopiloturin,
- Cyclodextrin,
- Inclusion complex,
- Increased solubility
How to Cite
Copyright (c) 2025 Karolynne Rodrigues de Melo, Maria Vitória Barbosa dos Santos, Débora Vitória Firmino de Lima, Cybelly Marques de Melo, Pedro José Rolim Neto, Rosali Maria Ferreira da Silva

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Context: Pilocarpus microphyllus (Jaborandi) is widely used for extracting pilocarpine, generating biomass rich in secondary metabolites. Among these, epiisopiloturin (EPI) exhibits potential against neglected diseases, in addition to anti-inflammatory and antinociceptive effects. However, its poor aqueous solubility limits its pharmaceutical application. Objective: To enhance the solubility of EPI by forming an inclusion complex with hydroxypropyl-β-cyclodextrin (HPβCD) using the freeze-drying technique. Methods: A phase solubility study was conducted to determine the stability constant and stoichiometry. The inclusion complex was prepared via lyophilization and characterized by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and in vitro dissolution testing. Results: Characterization confirmed the formation of the EPI:HPβCD complex, indicating strong interactions between components. The DSC thermogram showed the disappearance of the EPI melting peak, supported by FTIR results, suggesting successful complexation. XRD patterns revealed an amorphous structure. In vitro dissolution demonstrated a marked increase in solubility: 100% of the complexed EPI dissolved within 5 minutes, compared to only 19% of the free compound. Conclusion: Complexation with HPβCD significantly improved the solubility of EPI, reinforcing its potential for development into an innovative pharmaceutical formulation for the treatment of neglected diseases.
Downloads
References
- Agência Nacional de Vigilância Sanitária. (2010). Farmacopeia Brasileira (5ª ed.). Brasília, DF: Anvisa. Disponível em: https://acortar.link/OJwB94
- Badr-Eldin, S. M., Elkheshen, S. A., & Ghorab, M. M. (2008). Inclusion complexes of tadalafil with natural and chemically modified β-cyclodextrins. I: Preparation and in-vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 70(3), 819-827. https://doi.org/10.1016/j.ejpb.2008.06.024
- Bayomi, M. A., Abanumay, K. A., & Al-Angary, A. A. (2002). Effect of inclusion complexation with cyclodextrins on photostability of nifedipine in solid state. International journal of pharmaceutics, 243(1-2), 107-117. https://doi.org/10.1016/s0378-5173(02)00263-6
- Bhalani, D. V., Nutan, B., Kumar, A., & Singh Chandel, A. K. (2022). Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2055. https://doi.org/10.3390/biomedicines10092055
- Castillo, J. A., Palomo-Canales, J., Garcia, J. J., Lastres, J. L., Bolas, F., & Torrado, J. J. (1999). Preparation and characterization of albendazole β-cyclodextrin complexes. Drug development and industrial pharmacy, 25(12), 1241-1248. https://doi.org/10.1081/ddc-100102294
- Chatelain, E., & Ioset, J.-R. (2011). Drug discovery and development for neglected diseases: The DNDi model. Drug Design, Development and Therapy, 5, 175–181. https://doi.org/10.2147/DDDT.S16381
- Conteh, L., Engels, T., & Molyneux, D. H. (2010). Socioeconomic aspects of neglected tropical diseases. The Lancet, 375(9710), 239-247. https://doi.org/10.1016/S0140-6736(09)61422-7
- Cunha-Filho, M. S. S., & Sá-Barreto, L. C. L. (2008). Cyclodextrin: Important pharmaceutical excipient. Latin American Journal of Pharmacy, 27(4), 629-636. https://doi.org/10.54139/revinguc.v27i3.146
- Del Valle, E. M. M. (2004). Cyclodextrins and their uses: A review. Process Biochemistry, 39(9), 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9
- Dias, L. C., Dessoy, M. A., Guido, R. V., Oliva, G., & Andricopulo, A. D. (2013). Doenças tropicais negligenciadas: uma nova era de desafios e oportunidades. Química Nova, 36, 1552-1556. https://doi.org/10.1590/S0100-40422013001000011
- dos Santos, G. J. F. L. (2012). Ensaio de Dissolução das Formas Farmacêuticas: Aplicações na Investigação Científica e na Indústria Farmacêutica (Master's tesis), Universidade Fernando Pessoa Portugal.
- Figueiras, A., Carvalho, R. A., Ribeiro, L., Torres-Labandeira, J. J., & Veiga, F. J. (2007). Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 67(2), 531-539. https://doi.org/10.1016/j.ejpb.2007.03.005
- Guimarães, M. A. (2018). Avaliação terapêutica in vivo dos alcaloides epiisopiloturina e epiisopilosina extraídos de Pilocarpus microphyllus para esquistossomose. (Dissertação de Mestrado). Universidade Federal de Pernambuco, Recife.
- Haimhoffer, Á., Rusznyák, Á., Réti-Nagy, K., Vasvári, G., Váradi, J., Vecsernyés, M., Bácskay, I., Fehér, P., Ujhelyi, Z., & Fenyvesi, F. (2019). Cyclodextrins in Drug Delivery Systems and Their Effects on Biological Barriers. Pharmaceutical Science, 87(4), 33. https://doi.org/10.3390/scipharm87040033
- Higuchi, T., & Connors, K. A. (1965). Phase-solubility techniques. Advances in Analytical Chemistry and Instrumentation, 4, 117–212. https://www.scienceopen.com/document?vid=76f1d8c7-413c-40f2-aa7f-227482d5d1ad
- Kumar, S. K., Sushma, M., & Raju, P. Y. (2013). Dissolution enhancement of poorly soluble drugs by using complexation technique-a review. Journal of Pharmaceutical Sciences and Research, 5(5), 120. https://acortar.link/Q1kWZU
- Melo, C. M. de. (2015). Caracterização físico-química do protótipo epiisopiloturina e incremento do seu perfil de dissolução através da obtenção de complexos de inclusão (Dissertação de mestrado, Universidade Federal de Pernambuco, Programa de Pós-Graduação em Inovação Terapêutica). Universidade Federal de Pernambuco. https://repositorio.ufpe.br/handle/123456789/24295
- Mendhe, A. A., Kharwade, R. S., & Mahajan, U. N. (2016). Dissolution enhancement of poorly water-soluble drug by cyclodextrins inclusion complexation. Int J Appl Pharm, 8(4), 60-65. https://acortar.link/bysvBN
- Mura, P. (2015). Analytical techniques for characterization of cyclodextrin complexes in solution and solid state: A review. Journal of Pharmaceutical and Biomedical Analysis, 113, 226–238. https://doi.org/10.1016/j.jpba.2015.01.058
- Oliveira, E. A., Labra, M. E., & Bermudez, J. (2006). A produção pública de medicamentos no Brasil: uma visão geral. Cadernos de Saúde Pública, 22(11), 2379-2389. https://doi.org/10.1590/S0102-311X2006001100012
- Rashid, M., Malik, M. Y., Singh, S. K., Chaturvedi, S., Gayen, J. R., & Wahajuddin, M. (2019). Bioavailability enhancement of poorly soluble drugs: the holy grail in pharma industry. Current pharmaceutical design, 25(9), 987-1020. https://doi.org/10.2174/1381612825666190130110653
- Sarabia-Vallejo, Á., Caja, M. d. M., Olives, A. I., Martín, M. A., & Menéndez, J. C. (2023). Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics, 15(9), 2345. https://doi.org/10.3390/pharmaceutics15092345
- Sathigari, S., Chadha, G., Lee, Y. P., Wright, N., Parsons, D. L., Rangari, V. K., ... & Babu, R. J. (2009). Physicochemical characterization of efavirenz–cyclodextrin inclusion complexes. Aaps Pharmscitech, 10(1), 81-87. https://doi.org/10.1208/s12249-008-9180-3
- Silva, R. R., Amorim, C. A. D. C., Lima, M. D. C. A., Rabello, M. M., Hernandes, M. Z., Rêgo, M. J. B. D. M., ... & Andrade, C. A. S. D. (2023). Development of inclusion complex based on cyclodextrin and oxazolidine derivative. Brazilian Journal of Pharmaceutical Sciences, 59, e22009. https://doi.org/10.1590/s2175-97902023e22009
- Sobrinho, J. L. S., Soares, M. F. D. L. R., Labandeira, J. J. T., Alves, L. D. S., & Rolim Neto, P. J. (2011). Improving the solubility of the antichagasic drug benznidazole through formation of inclusion complexes with cyclodextrins. Química Nova, 34(9), 1534–1538. https://doi.org/10.1590/S0100-40422011000900010
- Sousa, I. L., Porto, C. M., Bassani, K. C., Martins, M. H., Pessine, F. B., & Morgon, N. H. (2020). Preparation and characterization of the β-cyclodextrin inclusion complex with benzbromarone. Journal of the Brazilian Chemical Society, 31(8), 1585-1596. https://doi.org/10.21577/0103-5053.20200044
- Tiwari, G., Tiwari, R., & Rai, A. K. (2010). Cyclodextrins in delivery systems: Applications. Journal of Pharmacy and Bioallied Sciences, 2(2), 72-79. https://doi.org/10.4103/0975-7406.67003
- Venturini, C. D. G., Nicolini, J., Machado, C., & Machado, V. G. (2008). Propriedades e aplicações recentes das ciclodextrinas. Química Nova, 31, 360-368. https://doi.org/10.1590/S0100-40422008000200032
- Veras LM, Guimaraes MA, Campelo YD, Vieira MM, Nascimento C, Lima DF, ... & Moraes, J. (2012). Activity of epiisopiloturine against Schistosoma mansoni. Current Medicinal Chemistry, 19(13), 2051-2058. https://doi.org/10.2174/092986712800167347
- Véras, L. M., Cunha, V. R., Lima, F. C., Guimarães, M. A., Vieira, M. M., Campelo, Y. D., ... & de Souza de Almeida Leite, J. R. (2013). Industrial scale isolation, structural and spectroscopic characterization of epiisopiloturine from Pilocarpus microphyllus Stapf leaves: A promising alkaloid against schistosomiasis. PLoS One, 8(6), e66702. https://doi.org/10.1371/journal.pone.0066702
- Vieira, A. C. Q. de M. (2017). Caracterização e incremento da cinética de dissolução do protótipo epiisopiloturina: uma abordagem físico-química (Tese de doutorado), Universidade Federal de Pernambuco, Centro de Ciências Biológicas.
- Wangsawangrung, N., Choipang, C., Chaiarwut, S., Ekabutr, P., Suwantong, O., Chuysinuan, P., Techasakul, S., & Supaphol, P. (2022). Quercetin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex-Loaded Hydrogels for Accelerated Wound Healing. Gels, 8(9), 573. https://doi.org/10.3390/gels8090573