Vol. 13 No. 82 (2024)
Articles

Happy men and machines: an applied approach to affective computing driven by linguistic data

Olha Vakhovska
Kyiv National Linguistic University, Kyiv, Ukraine.
Author Biography

Associate Professor, Dr. Kyiv National Linguistic University, Kyiv, Ukraine.

Published 2024-10-30

Keywords

  • affective computing, emotion concept, emotion name, mental image, ontology.

How to Cite

Vakhovska, O. (2024). Happy men and machines: an applied approach to affective computing driven by linguistic data. Amazonia Investiga, 13(82), 317–330. https://doi.org/10.34069/AI/2024.82.10.26

Abstract

This paper suggests that affective computing can achieve linguistic and cultural grounding of human knowledge about emotions, in combination of emotion concepts’ diachronic depths and modern contents in a national worldview, matching the evolution that the human mind has gone through. The diachronic depth is an image that had formed in man’s archaic consciousness and was prerequisite for a concept to emerge already in man’s modern consciousness, in that the archaic image converted to a concept and motivated the word that was created as this concept’s name. The paper shows that words for emotions contain original information making emotion concepts’ contents in the archaic worldview, and eventual information making these concepts’ contents in the modern worldview. This information is culture-specific; it is structured using frames and represented in the form of an ontology, which is machine-interpretable when formalized. Since emotion concepts’ diachronic depths are archetypal, their ontological representation is regarded as non-trivial, in view of the fact that artificial minds are not supported by psychological archetypes. This paper’s commitments find application in the case of HAPPINESS in the English worldview. Relevance of this paper’s commitments is substantiated within the field of artificial intelligence, considering the viable link it establishes between ontology of human existence, natural language ontology in particular, and ontology as a computational artifact, and also within the humanistic context, given the global-scale crisis humanity is now facing.

Downloads

Download data is not yet available.

References

  1. Abaev, V. (1948). Notion of ideosemantics. Language and Mind, 11(1), 13-18. https://crecleco.seriot.ch/textes/ABAEV-48/1.html
  2. Allbeck, J.M., & Badler, N.I. (2004). Creating embodied agents with cultural context. In Payr, S., & Trappl, R. (Eds.), Agent Culture: Human-Agent Interaction in a Multicultural World, 107-127. New Jersey & London: Lawrence Erlbaum Associates.
  3. Apresyan, Yu. (1974). Lexical semantics. M.: Eastern Literature. https://ru.scribd.com/document/322676735/
  4. Ballout, M., Krumnack, U., Heidemann, G., & Kühnberger, K.-U. (2023). Opening the black box: analyzing attention weights and hidden states in pre-trained language models for non-language tasks. Explainable Artificial Intelligence, 3-25. https://doi.org/10.1007/978-3-031-44070-0_1
  5. Bloomfield, L. (1933). Language. Chicago: UCP.
  6. Booij, G. (2005). The grammar of words. Oxford: OUP.
  7. Eco, U. (1994). The name of the rose. NY: HarperCollins.
  8. Eisenstein, S. (1929). The cinematographic principle and the ideogram. In Leyda, J. (Trans., Ed.), Film Form: Essays in Film Theory, 28-44. NY: Harcourt.
  9. Ekman, P. (1980). The face of man: expressions of universal emotions in a New Guinea village. NY: Garland STPM Press.
  10. Barrett, L. F. (1996). Hedonic tone, perceived arousal, and item desirability: three components of self-reported mood. Cognition and Emotion, 10(1), 47-68. https://doi.org/10.1080/026999396380385
  11. Barrett, L.F. (2023). How to understand emotions. HubermanLab. https://www.hubermanlab.com/episode/dr-lisa-feldman-barrett-how-to-understand-emotions
  12. Barsalou, L.W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577-609. https://doi.org/10.1017/s0140525x99002149
  13. Gal, A. (2009). Ontology engineering. In Liu, L., & Özsu, M.T. (Eds.), Encyclopedia of Database Systems, 1972-1973. Boston, MA: Springer. https://doi.org/10.1007/978-0-387-39940-9_1315
  14. Gebser, J. (1986). The ever-present origin. Ohio: OUP.
  15. Głaz, A. (2022). Linguistic worldview(s): approaches and applications. Oxfordshire: Routledge.
  16. Goodwyn, E. (2011). The neurobiology of the gods: how brain physiology shapes the recurrent imagery of myth and dreams. London, NY: Routledge. https://doi.org/10.4324/9780203141526
  17. Goodwyn, E. (2020). Archetypes and the ‘Impoverished Genome’ argument: updates from evolutionary genetics. Journal of Analytical Psychology, 65(5), 911-931. https://doi.org/10.1111/1468-5922.12642
  18. Grace, G.W. (1987). The linguistic construction of reality. Oxfordshire: Routledge.
  19. Hasson, U. (2016). This is your brain on communication. TED2016 Conference. Canada: Vancouver. https://www.ted.com/talks/uri_hasson_this_is_your_brain_on_communication?subtitle=en&lng=es&geo=es
  20. Hofstede, G. (1991). Cultures and organizations: software of the mind. London: McGraw-Hill.
  21. Hofweber, Th. (2023). Logic and ontology. In Zalta, E.N., & Nodelman, U. (Eds.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/sum2023/entries/logic-ontology/
  22. Isbister, K. (2004). Building bridges through the unspoken: embodied agents to facilitate intercultural communication. In Payr, S., & Trappl, R. (Eds.), Agent Culture: Human-Agent Interaction in a Multicultural World, 233-245. New Jersey & London: Lawrence Erlbaum Associates.
  23. Jarosz, I. (2020). In search of the cultural motivation in language: Girl and woman in James Joyce’s ‘Dubliners.’ Berlin: Peter Lang GmbH.
  24. Jobs, S. (1985). Steve Jobs’ presentation. Sweden: Lunds University. https://muse.ai/v/ZGQk98t-Steve-Jobs-presentation-at-Lunds-University-in-Sweden-1985
  25. Jung, C. (1947). On the nature of the psyche. Collected works, volume 8. London: Routledge.
  26. Karaulov, Yu. (Ed.). (1997). Russian language: encyclopedia. M.: Drofa. archive.org/details/Russkiy-yazyk-entsyklopedia-1997/page/n3/mode/2up
  27. Kendall, E.F., & McGuinness, D.L. (2019). Ontology engineering. Switzerland: Springer Cham. Synthesis Lectures on Data, Semantics, and Knowledge. https://doi.org/10.1007/978-3-031-79486-5
  28. Kosslyn, S. (1980). Image and mind. Cambridge: HUP.
  29. Kryshtal, O. (2022). To the singing of birds: a private journey to myself. Independently published. ISBN 978-966-437-597-6
  30. Kubryakova, E.S. (2004). Language and knowledge. M.: Languages of Slavic culture. https://search.rsl.ru/ru/record/01002416335
  31. Kubryakova, E. (Ed.). (1997). Concise dictionary of cognitive terms. M.: MSU named after Lomonosov.
  32. Kumar, H., & Martin, A. (2023). Artificial emotional intelligence: conventional and deep learning approach. Expert Systems with Applications, 212(13), 118651. https://doi.org/10.1016/j.eswa.2022.118651
  33. Kumar, S., Sumers, T., Yamakoshi, T., Goldstein, A., Hasson, U., Norman, K., Griffiths, Th., Hawkins, R., & Nastase, S. (2024). Shared functional specialization in transformer-based language models and the human brain. Nature Communications, 15, 5523. https://doi.org/10.1038/s41467-024-49173-5
  34. Levitsky, V. (2010). Etymological dictionary of Germanic languages. Volume I. Vinnytsia: NovaKnyga. ISBN: 978-966-382-240-2
  35. Levitsky, V. (2012). Semasiology. Vinnytsia: NovaKnyga. [Russian]. ISBN: 978-966-382-369-0
  36. Lotman, Yu. (2010). Semiosphere. Culture and explosion. Inside thinking worlds. SPB: Art. https://acortar.link/igqLXw
  37. Loveys, K., Sagar, M., & Broadbent, E. (2020). The effect of multimodal emotional expression on responses to a digital human during a self-disclosure conversation: a computational analysis of user language. Journal of Medical Systems. Patient Facing Systems, 44, 143. https://doi.org/10.1007/s10916-020-01624-4
  38. Łozowski, P. (2023). In search of panchrony: Saussure versus cognitive linguistics. Lublin Studies in Modern Languages and Literature, 47(2), 153-164. https://doi.org/10.17951/lsmll.2023.47.2.153-164
  39. Makovsky, M. (2012). Phenomenon of TABU in traditions and language of Indo-Europeans. M.: LIBROKOM BookHouse. https://z-lib.io/book/16684540
  40. Merleau-Ponty, M. (1962). Phenomenology of perception. Abingdon, Oxfordshire: Routledge.
  41. Minsky, M. (1974). A framework for representing knowledge. Artificial Intelligence. Memo No. 306. MIT: A.I. Laboratory. https://doi.org/10.1016/B978-1-4832-1446-7.50018-2
  42. Minsky, M. (2006). The emotion machine: commonsense thinking, artificial intelligence, and the future of the human mind. NY: Simon and Schuster.
  43. Moltmann, F. (2022). Natural language ontology. In Zalta, E.N., & Nodelman, U. (Eds.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/win2022/entries/natural-language-ontology/
  44. Nickols, F.W. (2000). The knowledge in knowledge management. In Woods, J.A., & Cortada, J.W. (Eds.), The Knowledge Management Yearbook, 89-107. Boston: Butterworth-Heinemann.
  45. Nikitin, M. (2007). Course in linguistic semantics. SPB: RSPU named after Gerzen.
  46. Ogden, C., & Richards, I. (1923). The meaning of meaning. San Diego: Harcourt.
  47. Ojha, S., Vitale, J., & Williams, MA. (2021). Computational emotion models: a thematic review. International Journal of Social Robotics, 13, 1253-1279. https://doi.org/10.1007/s12369-020-00713-1
  48. Osgood, Ch., May, W., & Miron, M. (1975). Cross-cultural universals of affective meaning. Illinois: University of Illinois Press.
  49. Ovchinnikova, E. (2012). Integration of world knowledge for natural language understanding. Amsterdam: Atlantis Press. https://doi.org/10.2991/978-94-91216-53-4
  50. Peters, S., & Shrobe, H. (2003). Using semantic networks for knowledge representation in an intelligent environment. IEEE International Conference on Pervasive Computing and Communications, 1, 323-337. https://doi.org/10.1109/PERCOM.2003.1192756
  51. Picard, R.W. (2000). Affective computing. MIT: MIT Press.
  52. Porshnev, B.F. (1974). On the beginning of human history. Problems of paleopsychology. Moscow: Mysl. https://psylib.org.ua/books/porsh01/index.htm
  53. Potebnya, A. (1892). Thought and language. Kharkov: Adolf Darre’s Typography. https://archive.org/details/libgen_00702348/page/n11/mode/1up?view=theater
  54. Propp, V. (2001). Morphology of magical fairytale. M.: Labyrinth. ISBN: 5-87604-140-8
  55. Rudenko, D. (1990). Name in philosophy of language paradigms. Kharkov: Osnova. [Russian].
  56. Scherer, K. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695-729. https://doi.org/10.1177/0539018405058216
  57. Scherer, K., Bänziger, T., & Roesch, E.B. (2010). A blueprint for affective computing: a sourcebook and manual. Oxford: Oxford University Press.
  58. Shershnova, A. (2020). Meaning-making through montage in English-language haiku. Lege artis. Language yesterday, today, tomorrow, 1, 314-349. https://lartis.sk/wp-content/uploads/2020/06/Shershnova_Issue-1_2020.pdf
  59. Smith, T.W. (2016). The book of human emotions: from ambiguphobia to umpty - 154 words from around the world for how we feel. NY: Brown Spark.
  60. Staab, S., & Studer, R. (Eds.). (2009). Handbook on ontologies. Berlin, Heidelberg: Springer-Verlag. International Handbooks on Information Systems.
  61. Steedman, M. (2008). On becoming a discipline. Computational Linguistics, 34(1), 137-144, https://doi.org/10.1162/coli.2008.34.1.137
  62. Strassner, J. (2008). Knowledge engineering using ontologies. In Bergstra, J., & Burgess, M. (Eds.), Handbook of Network and System Administration, 425-455. Amsterdam: Elsevier Science. https://doi.org/10.1016/B978-044452198-9.50018-5
  63. Sufyan, N.S., Fadhel, F.H., Alkhathami, S.S., & Mukhadi, J.Y.A. (2024). Artificial intelligence and social intelligence: preliminary comparison study between AI models and psychologists. Frontiers in Psychology. Emotion Science, 15, 1-8. https://doi.org/10.3389/fpsyg.2024.1353022
  64. Vakhovska, O. (2017). Metaphor in first-person verbal report on emotion experience of depression. Osnabrück: Osnabrück University.
  65. Vakhovska, O. (2021). Metaphors of emotions: towards a data-driven formalization. Messenger of KNLU. Philology, 24(1), 33-48. http://rep.knlu.edu.ua/xmlui/handle/787878787/5324
  66. Vakhovska, O. (2022a). Must the pot of seven holes be a translation theorist’s riddle? Knowledge, Education, Law, Management, 4(48), 117-125. https://doi.org/10.51647/kelm.2022.4.19
  67. Vakhovska, O. (2022b). The sin of the translator: on words and mental images in translation. Amazonia Investiga, 11(54), 178-188. https://doi.org/10.34069/AI/2022.54.06.17
  68. Vakhovska, O. (2023). Emotions and the archaic consciousness of man: a diachronic semantic reconstruction of the names of emotions in English. Amazonia Investiga, 12(69), 194-203. https://doi.org/10.34069/AI/2023.69.09.17
  69. Vakhovska, O. (2024). Emotions and consciousness: reconstructing emotion concepts’ diachronic depths with the use of proto-language data. LOGOS, 119, 49-58. https://www.ceeol.com/search/article-detail?id=1252743
  70. Vakhovska, O., & Borozenets, A. (2023). Emotions and the archaic consciousness of man: a diachronic semantic reconstruction of emotion names in Ukrainian. In Dyakon, R. (Ed.), Modern Ukrainian linguospace: ethnomental, axiological, pragmatic aspects, 26-48. Latvia: Baltija. https://doi.org/10.30525/978-9934-26-365-1-2
  71. Vakhovska, O., & Isaienko, O. (2021). Language, culture, and image-driven interpretations in translation: a case for the university translation classroom in Ukraine. Amazonia Investiga, 10(47), 240-249. https://doi.org/10.34069/AI/2021.47.11.25
  72. Vasko, R. (2019). Semiotic and culturological passportization of numeric phraseosymbols. Logos, 98, 94-103. https://doi.org/10.24101/logos.2019.10
  73. Vakhovska, O., & Jusuk, F. (2021). Image-driven interpretations in professional communicative mediation: bringing translation and psychotherapy together. Science and Education a New Dimension. Humanities and Social Sciences, 48(261), 63-67. https://seanewdim.com/wp-content/uploads/2022/02/httpsdoi.org10.31174SENDHS2021261IX4811.pdf
  74. Wang, Y., Song, W., Tao, W., Liotta, A., Yang, D., Li, X., Gao, Sh., Sun, Y., Ge, W., Zhang, W., & Zhang, W. (2022). A systematic review on affective computing: emotion models, databases, and recent advances. Information Fusion, 83-84, 19-52. https://doi.org/10.1016/j.inffus.2022.03.009
  75. White, D., & Katsuno, H. (2022). Artificial emotional intelligence beyond East and West. Internet Policy Review. Journal on Internet Regulation, 11(1), 1-17. https://doi.org/10.14763/2022.1.1618
  76. Yonck, R. (2017). Heart of the machine: our future in a world of artificial emotional intelligence. US: Arcade Publishing.
  77. Zada, Z., Goldstein, A., Michelmann, S., Simony, E., Price, A., Hasenfratz, L., Barham, E., Zadbood, A., Doyle, W., Friedman, D., Dugan, P., Melloni, L., Devore, S., Flinker, A., Devinsky, O., Nastase, S., & Hasson, U. (2023). A shared linguistic space for transmitting our thoughts from brain to brain in natural conversations. Unpublished preprint. https://doi.org/10.1101/2023.06.27.546708
  78. Zhabotynska, S. (2013a). Name as text: conceptual network of lexical meaning (analysis of name of emotion). Cognition, Communication, Discourse, 6, 47-76. https://acortar.link/hkNfF4
  79. Zhabotynska, S. (2013b). Saussure’s theory of the linguistic sign: a cognitive perspective. International Congress of Linguistics. Geneva: University of Geneva. https://acortar.link/pOyt4D