Reacción de las leguminosas a la acidez del suelo

Autores/as

  • Sergej V. Lukin, Dr. Belgorod State National Research University
  • Aleksej A. Zavalin, Dr. Pryanishnikov All-Russian Research Institute of Agrochemistry, Moscow, Russian Federation
  • Oleg A. Sokolov, Dr. Pryanishnikov All-Russian Research Institute of Agrochemistry, Moscow, Russian Federation
  • Nina Ya. Shmyreva Pryanishnikov All-Russian Research Institute of Agrochemistry, Moscow, Russian Federation

Palabras clave:

hydrogen and aluminium ions, legumes, nitrogen fixation, productivity, soil solution reaction

Resumen

La mayoría de las legumbres crecen y se desarrollan mejor en suelos neutros, con la excepción del lupino, que crece a un pH de 4.0 a 5.0. El trébol rojo secreta iones de hidrógeno en el suelo a través de sus raíces, cambiando el pH del suelo. Los nódulos de la raíz de las leguminosas se forman mejor a pH 6.5–7.0, y a valores de pH inferiores a 3, el citoplasma de las células de la raíz se descompone. A pH 8.7, las plantas son deficientes en NO3-, fosfatos, hierro, manganeso, cobre y zinc. En suelos ácidos, un exceso de aluminio inhibe la absorción de fósforo, calcio, potasio, hierro, sodio y boro por las células de la raíz. Las legumbres son sensibles a la concentración de iones de aluminio en el suelo. En las variedades de guisantes sensibles al aluminio, se suprime la absorción de nutrientes; la síntesis de lectina, hemicelulosa y celulosa se inhibe en las paredes celulares de la raíz; la permeabilidad del agua de la membrana disminuye; disminuye el número de grupos SH en las células; y se inhibe la actividad enzimática. En un medio ácido, el crecimiento del trébol se inhibe, los nódulos se forman mal y la tasa de fijación de nitrógeno disminuye. Cuanto mayor es la acidez, más difícil es asimilar el magnesio del suelo. La deficiencia de magnesio conduce a una fotosíntesis reducida y a un menor transporte de azúcar a las raíces y nódulos. Como resultado, la fijación de nitrógeno se detiene y las hojas de la planta se vuelven amarillas y se caen. Para las legumbres, la relación Ca: Mg es importante. La aplicación combinada de calcio y magnesio aumenta el rendimiento de la biomasa vegetal, reduce la formación de nódulos en el altramuz y aumenta en los frijoles. Esta diferencia está relacionada con el hecho de que los frijoles, el trébol y la judía son calciphiles, mientras que son calciphobous. El uso de la producción de residuos de azúcar de remolacha - defecar, fertilizante de calcio, es muy efectivo. La disminución de la acidez aumenta el contenido de leghemoglobina en los nódulos, aumenta el peso de los nódulos y aumenta la fijación de nitrógeno de 3 a 4 veces.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sergej V. Lukin, Dr., Belgorod State National Research University

Dr.Sci. (Agriculture), Professor, director.

Belgorodsky Center of Agrochemical Servic

Aleksej A. Zavalin, Dr., Pryanishnikov All-Russian Research Institute of Agrochemistry, Moscow, Russian Federation

Dr.Sci. (Agriculture), Professor, corresponding member of the RAS.

Laboratory of Agrochemistry of Nitrogen and Biological Nitrogen

Oleg A. Sokolov, Dr., Pryanishnikov All-Russian Research Institute of Agrochemistry, Moscow, Russian Federation

Dr.Sci. (Biology), Professor.

Laboratory of Agrochemistry of Nitrogen and Biological Nitrogen

Nina Ya. Shmyreva, Pryanishnikov All-Russian Research Institute of Agrochemistry, Moscow, Russian Federation

Cand.Sci. (Biology), senior research scientist.

Laboratory of Agrochemistry of Nitrogen and Biological Nitrogen

Citas

Akanova, N. I., & Dvoynikova, E. D. (2014). Effectiveness of the application of Rhizotorfin in the formation of the productivity of leguminous cultures with the cultivation on the lixiviated chernozem of the Penza region. XXI Century: Resumes of the Past and Challenges of the Present Plus, 17(1), 85–91.

Appunu, C., & Dhar, B. (2006). Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. African Journal of Biotechnology, 5, 842–845.

Belyshkina, M. E. (2018). Problem of production of vegetable protein b and role of grain legumes in its decision. Prirodoobustrojstvo, (2), 65–73.

Black, K. A. (1973). Plant and Soil. Moscow: Kolos.

Chirkova, T. V. (1988). Ways of plant adaptation to hypoxia and anoxia. Leningrad: LGU.

Denk, T. R. A., Mohn, J., Decock, C., Lewicka-Szczebak, D., Harris, E., Butterbach-Bahl, K., … Wolf, B. (2017). The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biology and Biochemistry, 105, 121–137. https://doi.org/10.1016/j.soilbio.2016.11.015

Dzyun, A. G. (2018). Acid dynamics of sod-podzolic loamy soil in a crop rotation with fertilizers against different backgrounds. Agrochemical Herald, (5), 19–21.

Ferguson, B. J., & Gresshoff, P. M. (2015). Physiological Implications of Legume Nodules Associated with Soil Acidity. In S. Sulieman & L. S. Tran (Eds.), Legume Nitrogen Fixation in a Changing Environment (pp. 113–125). https://doi.org/10.1007/978-3-319-06212-9_6

Gao, D., Wang, X., Fu, S., & Zhao, J. (2017). Legume Plants Enhance the Resistance of Soil to Ecosystem Disturbance. Frontiers in Plant Science, 8, 1295. https://doi.org/10.3389/fpls.2017.01295

Ivashikina, N. V., & Sokolov, O. A. (2001). Physiological and molecular mechanisms of nitrate absorption by plants. Agricultural Chemistry, (2), 80–92.

Ivashikina, N. V., & Sokolov, O. A. (2006). Blocking of potassium channels in root cells by heavy metals and strontium. Agricultural Chemistry, (12), 47–53.

Jaiswal, S., Naamala, J., & Dakora, F. (2018). Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biology and Fertility of Soils, 54, 309–318. https://doi.org/10.1007/s00374-018-1262-0

Kaufman, A. L., & Blinnikova, V. D. (2018). Potentiometric method for determining the pH during the sprouting of legumes. Bulletin of Scientific Conferences, 3–4, 75–78.

Klimashevsky, E. L. (1991). The genetic aspect of the mineral nutrition of plants. Moscow: Agropromizdat.

Kosolapova, A. I., Zavyalova, N. E., Mitrofanova, E. M., Vasbieva, M. T., Yamaltdinova, V. R., Fomin, D. S., & Teterlev, I. S. (2018). Efficiency of Long-Term Fertilization on the Sod-Podzolic Soils of Cis-Ural Region. Agricultural Chemistry, (2), 42–55.

Litvinovich, A. V., Lavrischev, A. V., Bure, V. M., Pavlova, A. Y., & Kovleva, A. O. (2017). Influence of Various Size Fractions of Dolomite on the Indicators of Soil Acidity of Light Loamy Sod-Podzolic Soil (Empirical Models of Acidification Process). Agricultural Chemistry, (12), 27–37.

Moiseenko, I. Y., & Zajtseva, O. A. (2009). Increase in nitrogen-fixing ability and symbiotic potential of soybean plants during liming. Agrochemical Herald, (3), 17–21.

Naliukhin, A. N., Vedeneeva, E. V., & Vlasova, O. A. (2017). Changing of Physico-Chemical Properties of Sod-Podzolic Soil under Surface Application of Local Types of Liming Fertilizers on Perennial Grasses. Agricultural Chemistry, (11), 13–20.

Nebolsin, A. N., & Nebolsina, Z. P. (1997). Optimum plant parameters of acidity of sod-podzolic soil. Agricultural Chemistry, (6), 19–26.

Osmolovskaya, N. G., & Ivanova, I. L. (1989). Regulation of ionic balance in the leaves of beans and beets with ammonium and nitrate nutrition. Plant Physiology, 36(5), 196–202.

Osmolovskaya, N. G., & Ivanova, I. L. (1992). Features of transport and accumulation of ions in plants with nitrate and ammonium nutrition of legumes. Physiology and Biochemistry of Cultivated Plants, 24(5), 454–461.

Petukhov, G. D. (1995). The lower limit of acidity complies with the requirements of the biology of vetch and pea. Tyumen: Trudy NIISKh Severnogo Zauralia.

Shishkin, A. F. (2002). Efficiency of new lime fertilizers. Moscow: TsINAO.

Stefan, A., Van Cauwenberghe, J., Rosu, C. M., Stedel, C., Labrou, N. E., Flemetakis, E., & Efrose, R. C. (2018). Genetic diversity and structure of Rhizobium leguminosarum populations associated with clover plants are influenced by local environmental variables. Systematic and Applied Microbiology, 41(3), 251–259. https://doi.org/10.1016/j.syapm.2018.01.007

Stupina, L. A. (2010). The role of symbiotic potential in the formation of pea yields on gray forest soils. Fertility, (3), 34–36.

Sychev, V. G., & Ahanova, N. I. (2019). Modern problems and prospects of chemical amelioration of acidis soils. Fertility, (1), 3–7.

Trepachev, E. P. (1999). Agrochemical aspects of biological nitrogen in modern agriculture. Moscow: Agrokonsalt.

Valentine, A., Benedito, V., & Kang, Y. (2010). Legume Nitrogen Fixation and Soil Abiotic Stress: From Physiology to Genomics and Beyond. In Annu. Plant Rev. (Vol. 42, pp. 207–248). https://doi.org/10.1002/9781444328608.ch9

Valkov, V. F. (1986). Soil ecology of agricultural plants. Moscow: Agropromizdat.

Vavilov, P. P., & Posypanov, G. S. (1983). Legumes and the problem of plant protein. Moscow: Rosselkhozizdat.

Voloshin, V. A. (2018). The effect of liming acid soil on yield and quality of perennial legumes. Perm Agrarian Journal, 23(3), 48–53.

Descargas

Publicado

2019-10-11

Cómo citar

Lukin, S. V., Zavalin, A. A., Sokolov, O. A., & Shmyreva, N. Y. (2019). Reacción de las leguminosas a la acidez del suelo. Amazonia Investiga, 8(23), 162–170. Recuperado a partir de https://amazoniainvestiga.info/index.php/amazonia/article/view/800

Número

Sección

Articles