Análisis de la influencia de la desviación geométrica en las características aerodinámicas de las palas del ventilador

Autores/as

  • Alexander N. Arkhipov Moscow Aviation Institute (National Research University), Moscow, Russia
  • Ekaterina V. Bugryashova Design engineer, PJSC UEC-Saturn, Russia
  • Yuri A. Ravikovich Moscow Aviation Institute (National Research University), Moscow, Russia
  • Dmitry P. Kholobtsev Moscow Aviation Institute (National Research University), Moscow, Russia
  • Artem O. Shevyakov Moscow Aviation Institute (National Research University), Moscow, Russia

Palabras clave:

Características aerodinámicas, compresor de baja presión, desviaciones geométricas, motor de turbina de gas, NUMECA, optimización robusta, Siemens NX, ventilador.

Resumen

En este artículo se presentan los resultados de los cálculos de las características aerodinámicas para las aspas del ventilador del motor de turbina de gas para un avión regional, teniendo en cuenta las desviaciones de producción. Asimismo, se describen los modelos analizados de aspas con diferentes desviaciones geométricas de perfil aerodinámico, el modelo calculado de la etapa del ventilador y las características aerodinámicas estimadas. A su vez, los resultados del cálculo se ilustran con un ejemplo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alexander N. Arkhipov, Moscow Aviation Institute (National Research University), Moscow, Russia

PhD, Senior Researcher of the Research Department, Moscow Aviation Institute (National Research University), Moscow, Russia

Ekaterina V. Bugryashova, Design engineer, PJSC UEC-Saturn, Russia

Design engineer, PJSC UEC-Saturn, Russia

Yuri A. Ravikovich, Moscow Aviation Institute (National Research University), Moscow, Russia

Doctor of Science, Vice-Rector of Research; Head of the Department “Construction and design of engines”, Moscow Aviation Institute (National Research University), Moscow, Russia

Dmitry P. Kholobtsev, Moscow Aviation Institute (National Research University), Moscow, Russia

Chief of the Research Department, Moscow Aviation Institute (National Research University), Moscow, Russia

Artem O. Shevyakov, Moscow Aviation Institute (National Research University), Moscow, Russia

Engineer of the Research Department, Moscow Aviation Institute (National Research University), Moscow, Russia

Citas

Arkhipov A.N., Ravikovich Yu.A., Fedorov I.M., Kholobtsev D.P. (2017). Constructing 3D fan blade models in cadsystem on the basis of coordinate measuring techniques. Vestnik of Samara University. Aerospace and Mechanical Engineering, 16(3), 7-16.

Arkhipov A.N., Bugryashova E.V., Ravikovich Yu.A., Savin R.A., Terentjev V.V., Shevyakov A.O. (2018). Automated construction of a fan blade model according to data of CAD profile measurements. Vestnik of Samara University. Aerospace and Mechanical Engineering, 17(4), 7-17.

Arkhipov A.N., Ravikovich Yu.A., Matushkin A.A., Kholobtsev D.P. Shevjakov A.O. (2018). Automation program for the construction of a fan blade using NX CAD systems according to KIM. Certificate of state registration of a computer program ?2018665345. 04 December 2018.

Baturin O.V., Goryachkin E.S., Kolmakova D.A., Popov G.M., Ledenev A.I. (2013). Numerical simulation of the working process of a free turbine together with low-pressure turbines, a transition channel and an output device. Electronic textbook. Samara: Samara state aerospace university.

Bestle D., Flassig P.M. (2010). Optimal Aerodynamic Compressor Blade Design Considering Manufacturing Noise. Conference: Association for Structural and Multidisciplinary Optimization in the UK.

Bestle D., Flassig P.M., Dutta A.K. (2011). Robust Design of Compressor Blades in the Presence of Manufacturing Noise. Conference: 9th European Conference on Turbomachinery.

Inozemtsev, A.A., Nikhamkin, M.A., Sandratskii, V.L. (2008). Fundamentals of the Design of Aircraft Engines and Power Plants. Moscow: Mashinostroenie.

Ma C., Gao L., Cai Y., Li R. (2017). Robust Optimization Design of Compressor Blade Considering Machining Error. Turbomachinery Technical Conference and Exposition. ASME Turbo Expo.

NUMECA Int., «Flow Integrated Enviroment», User Manual, Numeca Int., Brussels, Belgium, 2014.

Li Z., Liu Y., Agarwal R.K. (2018). Robust Optimization Design of Single-Stage Transonic Axial Compressor Considering the Manufacturing Uncertainties. Turbomachinery Technical Conference and Exposition. ASME Turbo Expo.

Skibin, V.A., Solonin, V.I., Sosunov, V.A., Temis, Yu.M. (2010). Machine Building. Encyclopedia. Moscow: Mashinostroenie, 2010

Vinogradov K.A., Kretinin G.V., Leshenko I.A., Otriakhina K.V., Fedechkin K.S., Vinogradova O.V., Bushmanov V.V., Khramin R.V. (2018). Robust Multiphysics Optimization for Fan Blade Aerodynamic Efficiency, Structural Properties and Flutter Sensitivity. Turbomachinery Technical Conference and Exposition. ASME Turbo Expo.

Descargas

Publicado

2019-09-26

Cómo citar

Arkhipov, A. N., Bugryashova, E. V., Ravikovich, Y. A., Kholobtsev, D. P., & Shevyakov, A. O. (2019). Análisis de la influencia de la desviación geométrica en las características aerodinámicas de las palas del ventilador. Amazonia Investiga, 8(22), 443–452. Recuperado a partir de https://amazoniainvestiga.info/index.php/amazonia/article/view/768

Número

Sección

Articles