Materiales compuestos de vidrio epoxi para placas de circuito impreso de sustrato de gigabit electronics

Autores/as

  • Sergey V. Vantsov Moscow Aviation Institute (National Research University), Moscow, Russia
  • Fedor V. Vasilyev Moscow Aviation Institute (National Research University), Moscow, Russia
  • Arkadiy M. Medvedev Moscow Aviation Institute (National Research University), Moscow, Russia
  • Olga V. Khomutskaya Moscow Aviation Institute (National Research University), Moscow, Russia

Palabras clave:

Aviónica, cerámica LTCC, dieléctrico, efecto scin, materiales compuestos de vidrio epoxi, placas de circuitos impresos, PTFE.

Resumen

El desarrollo de la tecnología de placa de circuito impreso sigue la tendencia general del desarrollo de la electrónica: se busca producir un aumento tanto en la funcionalidad como en el rendimiento. Esto requiere placas de circuito impreso para aumentar la densidad de ensamblaje de componentes electrónicos e interconexiones y reducir los retrasos constructivos en las líneas de transmisión de información. Aparentemente, esto requeriría el uso de materiales de alta frecuencia como tereftalato de polietileno o cerámica de radiofrecuencia. Sin embargo, ello conllevaría una reestructuración multimillonaria de la industria de placas de circuito impreso. El presente artículo muestra que, cumpliéndose ciertas condiciones, es posible prescindir de la reestructuración de la industria, permaneciendo el uso de dieléctricos compuestos de lámina de vidrio epoxi tradicionales. Sin embargo, para lograr este propósito es necesario tener en cuenta las características y propiedades de sus componentes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sergey V. Vantsov, Moscow Aviation Institute (National Research University), Moscow, Russia

PhD, Associate Professor, Moscow Aviation Institute (National Research University), Moscow, Russia

Fedor V. Vasilyev, Moscow Aviation Institute (National Research University), Moscow, Russia

PhD, Associate Professor, Moscow Aviation Institute (National Research University), Moscow, Russia

Arkadiy M. Medvedev, Moscow Aviation Institute (National Research University), Moscow, Russia

Doctor of Science, Moscow Aviation Institute (National Research University), Moscow, Russia

Olga V. Khomutskaya, Moscow Aviation Institute (National Research University), Moscow, Russia

Assistent, Moscow Aviation Institute (National Research University), Moscow, Russia

Citas

Atams A., Atamas N., Bulavin L. (2005). Structure correlations of water molecules in a concentrated aqueous solution of ethanol. Journal of Molecular Liquids, 120(1), 15– 17.

Brook D. (2010). Skin Effect. UltraCAD Design, Inc. https://www.ultracad.com/articles/skin%20effect.pdf.

Coombs ?.F. (2008). Handbook Printed Circuits. New-York: McGraw-Hill Companies.

Coonrod J, Horn III A.F. (2011). Understanding Dielectric Constant for Microwave PCB Materials. High Frequency Electronics, 10(7), 18-24.

Cuming Microwave Corporation (2016). Low Loss Dielectric Stock Materials, https://www.cumingmicrowave.com/products/low-loss-dielectric-stock-materials.html.

Horn III A.F., Reynolds J.W., LaFrance P.A., Rautio J.C. (2010). Effect of conductor profile on the insertion loss, propagation constant, and dispersion in thin high frequency transmission lines, DesignCon 2010, 1-22.

IPC (2018). Association Connecting Electronics Industries. IPC 4562. Metal Foil for Printed Wiring Applications. https://www.ipc.org/TOC/IPC-4562A.pdf.

IPC (2018). Association Connecting Electronics Industries. IPC-2141 Controlled Impedance Circuit Boards and High Speed Logic Design. www.ipc.org.

IPC (2018). Association Connecting Electronics Industries. IPC-PCB Technology Trend 2018. www.ipc.org.

IPC (2018). Association Connecting Electronics Industries. IPC-TM-650, Method 2.6.25A. https://www.ipc.org/test-methods.aspx.

Isola introduces ultra-low loss materials for 100 gigabit Ethernet applications. 2014. Microwave journal. https://www.microwavejournal.com/articles/22539.

Medvedev A. (2016). A metalized-hole PCB as a strain gauge. Instruments and Experimental Techniques, 59, 879-881.

Medvedev A. (2017). When it's not about the board. Recommendations for assembly and production technologists. Electronics – Science. Technology. Business, 10, 108-113.

Mittal A. (2018). How to Analyze a PCB Transmission Line? Sierra Circuits Inc, https://www.protoexpress.com/blog/analyze-pcb-transmission-line.

Qin F., Brosseau C. (2012). A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. Journal of Applied Physics, 111(6).

Qin F., Brosseau C., Peng H.X. (2011). In situ microwave characterization of microwire composites under mechanical stress. Applied Physics Letters, 99(25).

Qin F., Peng H.X., Prunier C., Brosseau C. (2010). Mechanical-electromagnetic coupling of microwire polymer composites at microwave frequencies. Applied Physics Letters, 97(15).

Rahimi A., Yoon Y.K. (2016). Study on Cu/Ni Nano Superlattice Conductors for Reduced RF Loss. IEEE Microwave and Wireless Components Letters, 26(4), 258-260.

Rautio J.C. (2007). EM-Component-Based Design of Planar Circuits. IEEE Microwave Magazine, 8(4), 79-90.

Rautio J.C. (2016). The IMaRC 2015 MTT-S SIGHT Special Event Amateur Radio Station. IEEE Microwave Magazine, 17(6).

Tsunooka T., Andou M., Higashida Y., Sugiura H., Ohsato H. (2003). Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. Journal of the European Ceramic Society, 23(14), 2573-2578.

Descargas

Publicado

2019-09-26

Cómo citar

Vantsov, S. V., Vasilyev, F. V., Medvedev, A. M., & Khomutskaya, O. V. (2019). Materiales compuestos de vidrio epoxi para placas de circuito impreso de sustrato de gigabit electronics. Amazonia Investiga, 8(22), 434–442. Recuperado a partir de https://amazoniainvestiga.info/index.php/amazonia/article/view/767

Número

Sección

Articles