El efecto de la irradiación con láser sobre la actividad de las bacterias Bacillus subtilis y Pseudomonas Fluorescens

Autores/as

  • M. V. Maslova Michurinsk State Agrarian University, Tambov Region, Russia
  • E. V. Grosheva Michurinsk State Agrarian University, Tambov Region, Russia
  • A. V. Budagovsky Michurinsk State Agrarian University, Tambov Region, Russia
  • O. N. Budagovskaya Michurinsk State Agrarian University, Tambov Region, Russia

Palabras clave:

Irradiación con láser Bacillus subtilis, Pseudomonas fluorescens, estimulación bacteriana, monitoreo biológico de enfermedades de las plantas

Resumen

El artículo analiza el problema de aumentar la actividad de las bacterias antagonistas de fitopatógenos bajo el efecto de la irradiación con láser. Se ha demostrado que el tratamiento a corto plazo de las células de Bacillus subtilis y Pseudomonas fluorescens con luz coherente puede aumentar la tasa de crecimiento bacteriano y mejorar su actividad fungicida. Asegura una alta eficiencia de las medidas ambientalmente seguras para el monitoreo biológico de las enfermedades de las plantas, lo cual está en línea con los principios de la agricultura orgánica.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

M. V. Maslova, Michurinsk State Agrarian University, Tambov Region, Russia

Michurinsk State Agrarian University, Tambov Region, Russia

E. V. Grosheva, Michurinsk State Agrarian University, Tambov Region, Russia

Michurinsk State Agrarian University, Tambov Region, Russia

A. V. Budagovsky, Michurinsk State Agrarian University, Tambov Region, Russia

Michurinsk State Agrarian University, Tambov Region, Russia

O. N. Budagovskaya, Michurinsk State Agrarian University, Tambov Region, Russia

Michurinsk State Agrarian University, Tambov Region, Russia

Citas

Budagovsky, ?.V, Maslova, M.V., Budagovskaya, ?.N., Budagovsky, I.A. (2017). Control of cell inter-action using quasi-monochromatic light with varying spatiotemporal coherence. Quantum Electronics, 47(2), 158-162.

Horuz, S., Aysan, Y. (2018). Biological control of watermelon seedling blight caused by acidovorax citrulliusing antagonistic bacteria from the genera Curtobacterium, Microbacterium and Pseudomonas. Plant Protect. Sci., 54(3), 138-146.

Huang, X., Zhang, N., Yong, X., Yang, X., Shen, Q. (2012). Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiological Research, 167(3), 135-143.

Kanjanamaneesathian, M., Meetum, P. (2018). Paenibacillus polymyxa as potential biological control agent isolated from vegetables grown hydroponically in Thailand. Kasem Bundit Engineering Journal, 8, 14-24.

Kiprushkina, E.I., Baranenko, D.A., Kolodyaznaya, V.S. (2017). A comparative study of fuel use and income analysis of potato production with bacteria-antagonists in Leningrad region of Russia. Energy Procedia, 113, 194-200.

Mohammadi, P., Tozlu, E., KoTan, R., KoTan, M. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protect. Sci., 53(3), 134-143.

Morgera, E., Caro, C.B., Durán, G.M. (2012). Organic agriculture and the law. Food and agriculture organization of the united nations. Rome.

Nikolaeva, M.A., Kalugina, S.A., Kartashova, L.V. (2016). Analiz rossiiskogo rynka organicheskikh produktov pitaniya [Analysis of the Russian market of organic food]. Siberian Trade and Economic Journal, 1(22), 226 – 230.

Novikov, I.I. (2017). Mikrobiologicheskaya zashchita rastenii - osnova fitosanitarnoi optimizatsii agroekosistem [Microbiological protection of plants is basis of phytosanitary optimization of agroecosystems]. Protection and quarantine of plants, 4, 3 – 6.

Pal, K.K., Gardener, B.M.S. (2006). Biological control of plant pathogens. The plant health instructor, 2, 1117-1142.

Petrovsky, A.S., Karakotov, S.D. (2017). Mikrobiologicheskie preparaty v rastenievodstve. Alternativa ili partnerstvo? [Microbiological preparations in crop production. Alternative or partnership?]. Plants protection and quarantine, 2, 14 – 18.

Rahmawati, H.K., Purnomo, A.J., Umniyatie, S., Pramiadi, D., Sari, N. (2016). Identification and characterization of chitinase enzyme producing bacteria from bat guano and its potential to inhibit the growth of fungus Colletotrichum sp. cause anthracnose on the chili by in vitro. Int J Adv Agricultural & Environmental Engg, 3, 249-254.

Shternis, M.V. (2012). Tendentsii razvitiya biotekhnologii mikrobnykh sredstv zashchity rastenii v Rossii [Trends in the development of microbial plant protection biotechnology in Russia ]. Vestnik of the Tomsk State University. Biology, 2(18), 92 – 100.

Sindhu, S.S., Sehrawat, A., Sharma, R., Dahiya, A. (2016). Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Defence Life Science Journal, 1(2), 135-148.

Singh, U.B. Malviya, D., Wasiullah, Singh, S., Pradhan, J.K., Singh, B.P., Roy, M., Imram, M., Pathak, N., Baisyal, B.M., Rai, J.P., Sarma, B.K., Singh, R.K., Sharma, P.K., Kaur, S.D., Manna, M.C., Sharma, S.K., Sharma, A.K. (2016). Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L). Microbiological research, 192, 300-312.

Suman, B. (2018). Cultural and Morphological Characterization of Native Pseudomonas fluorescens Isolates from Telangana. Int. J. Pure App. Biosci, 6(4), 592-597.

Syamala, M., Sivaji, M. (2017). Functional characterization of various plant growth promoting activity of Pseudomonas fluorescens and Bacillus subtilis from Aloe vera rhizosphere. Journal of Pharmacognosy and Phytochemistry, 6(3), 120-122.

Yasmin, S., Zaka, A., Imran, A., Zahid, M.A., Yousaf, S., Rasul, G., Arif, M., Mirza, M.S. (2016). Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PloS one, 11(8).

Descargas

Publicado

2019-08-31

Cómo citar

Maslova, M. V., Grosheva, E. V., Budagovsky, A. V., & Budagovskaya, O. N. (2019). El efecto de la irradiación con láser sobre la actividad de las bacterias Bacillus subtilis y Pseudomonas Fluorescens. Amazonia Investiga, 8(21), 610–616. Recuperado a partir de https://amazoniainvestiga.info/index.php/amazonia/article/view/146

Número

Sección

Articles