Published 2024-09-30
Keywords
- prooxidants, antioxidants, ascorbic acid, catalase.
How to Cite
Copyright (c) 2024 Mariia Bobrova, Viktoriia Gencheva, Olena Holodaieva, Ivan Myhal, Olha Tsviakh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
This study investigated the impact of storage time on the prooxidant-antioxidant balance (PAB) in seed tissues of 12 agricultural plant species, including both monocots and dicots. We measured superoxide generation, TBA-active products, and the activity of enzymatic antioxidants (superoxide dismutase, catalase, and cytochrome oxidase) and non-enzymatic antioxidants (ascorbic acid and glutathione). Biochemical parameters were recorded monthly for one year.
Our results demonstrated that the activity of enzymatic antioxidants and the content of non-enzymatic antioxidants decreased with increased seed storage time. Conversely, both the generation of reactive oxygen species and the level of free radical damage to biomolecules increased. The percentage change in free radical peroxidation and antioxidant protection depended on the initial PAB status of the seeds. Monocots exhibited a greater overall increase in prooxidant activity during storage, while dicots showed a less pronounced decrease in antioxidant content. A notable surge in prooxidant activity and a corresponding decline in antioxidant activity occurred at 9-10 months of storage for dicots and 6-7 months for monocots. These findings highlight the importance of considering storage time and species-specific differences to optimize planting strategies and seed care, as well as the use of appropriate plant foods.
Downloads
References
- Apel, K., & Hirt, Н. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Baiano, A., & Del Nobile, M. A. (2016). Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Critical Reviews in Food Science and Nutrition, 56(12), 2053-2068. https://doi.org/10.1080/10408398.2013.812059
- Bartoli, C. G., Casalongueb, C. A., Simontacchia, M., Marquez-Garciac, B., & Foyer, C. H. (2013). Interactions between a hormone and redox signaling pathways in the control of growth and cross-tolerance to stress. Environmental and Experimental Botany, 94, 73-88. http://dx.doi.org/10.1016/j.envexpbot.2012.05.003
- Вerwal, M.K., & Ram, C. (2019). Superoxide Dismutase: A stable biochemical marker for abiotic stress tolerance in higher plants. Open access peer-reviewed chapter. DOI: https://doi.org/10.5772/intechopen.82079
- Bobrova, M., Holodaieva, O., Koval, S., Kucher, O., & Tsviakh, O. (2021). The effect of hypothermia on the state of the prooxidant-antioxidant system of plants. Revista de la Universidad del Zulia, 12(33), 82-101. https://doi.org/10.46925//rdluz.33.07
- Bobrova, M., Holodaieva, O., Arkushyna, H., Larycheva, O., & Tsviakh, O. (2020). The value of the prooxidant-antioxidant system in ensuring the immunity of plants. Revista de la Universidad del Zulia, 11(30), 237-266. https://doi.org/10.46925//rdluz.30.17
- Bobrova, M., Holodaieva, O., Koval, S., Kucher, O., & Tsviakh, O. (2022) Features of changes in prooxidant- antioxidant balance of tissues during activation of seed germination. Journal of the University of Zulia, 13(37), 362-382. https://doi.org/10.46925//rdluz.37.23
- Dat, J., Vandenabeele, S., Vranova, E. V. M. M., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 57, 779-795.
- Dickinson M. (2003). Molecular plant pathology. London, New York: BIOS Scientific Publishers, 273 р. https://doi.org/10.4324/9780203503300
- Dmytriyev O.P., & Kravchuk, Z.M. (2005). Active forms of oxygen and immunity of plants. Cytology and genetics, 39(4), 64-75. http://dspace.nbuv.gov.ua/handle/123456789/126766
- Foyer C. H., & Noctor G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & redox signaling, 11(4), 861-905. https://doi.org/10.1089/ars.2008.2177
- Gautam, V., Kaur, R., Kohli, S.K., Verma, V., Kaur, P., Singh, R., Saini, P., Arora, S., Thukral, A.K., Karpets, Yu.V., Kolupaev, Yu.E., & Bhardwaj, R. (2017). ROS compartmentalization in plant cells under abiotic stress condition. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Singapore: Springer, pp. 89-114.
- Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Govindaraj, M., & Poomaruthai, M., & Albert, A. (2017). Role of antioxidant in seed quality-а review. Agricultural Reviews, 38, 180-190. DOI: 10.18805/ag.v38i03.8977
- Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant physiology, 141(2), 312-322. https://doi.org/10.1104/pp.106.077073
- Hasanuzzaman, M., Nahar, K., Anee, T.I., & Fujita, M. (2017). Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiology and molecular biology of plants, 23, 249-268. https://doi.org/10.1007/s12298-017-0422-2
- Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390/antiox8090384
- Huang, M., & Guo, Z. (2005). Responses of antioxidant system to chilling stress in two rice cultivars differing in sensitivity. Biologia plantarum, 49, 81-84. https://doi.org/10.1007/s00000-005-1084-3
- Janků, М., Luhová, L., & Petřivalský, М. (2019). On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants, 8(4), 105. https://doi.org/10.3390/antiox8040105
- Kiprovski, B., Mikulic-Petkovsek, M., Slatnar, A., Veberic, R., Stampar, F., Malencic, D., & Latkovic, D. (2015). Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chem, 185, 41-47. https://doi.org/10.1016/j.foodchem.2015.03.137
- Kohen, R., & Nyska, A. (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology, 30(6), 620-650. https://doi.org/10.1080/01926230290166724
- Kolupaev, Yu.E., Karpets, Yu.V., & Kabashnikova, L.F. (2019) Antioxidative system of plants: cellular compartmentalization, protective and signaling functions, mechanisms of regulation. Applied Biochemistry and Microbiology, 55(5), 441-459. https://doi.org/10.1134/S0003683819050089
- Kumar S., Malik J., Thakur P., Kaistha S., Sharma K.D., Upadhyaya H.D. ... & Nayyar, H (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta physiologiae plantarum, 33, 779-787. https://doi.org/10.1007/s11738-010-0602y
- Marrocco, I., Altieri, F., & Peluso, I. (2017). Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative medicine and cellular longevity, 2017(1), 6501046. https://doi.org/10.1155/2017/6501046
- Mittler, R. (2017). ROS Are Good. Trends in plant science, 22(1), 11-19. https://doi.org/10.1016/j.tplants.2016.08.002
- Morales, M., & Munné-Bosch, S. (2019). Malondialdehyde: Facts and Artifacts. Plant physiology, 180(3), 1246-1250. https://doi.org/10.1104/pp.19.00405
- Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress‐and age‐associated degenerative diseases. Oxidative medicine and cellular longevity, 2019(1), 9613090. https://doi.org/10.1155/2019/9613090
- Oracz, K., & Karpinski, S. (2016). Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. Frontiers in Plant Science, 7, 864. https://doi.org/10.3389/fpls.2016.00864
- Pacheco, J. H. L., Carballo, M. A., & Gonsebatt, M. E. (2018). “Antioxidants against environmental factor-induced oxidative stress,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, K. H. Al-Gubory, Ed., vol. 8, pp. 189-215. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-67625-8
- Paciolla, С., Fortunato, S., Dipierro, N., Paradiso, A., & De Leonardis, S. (2019). Vitamin C in Plants: From Functions to Biofortification. Antioxidants, 8(11), 519. https://doi.org/10.3390/antiox8110519
- Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J. H., … Levine, M. (2003). Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. Journal of the American College of Nutrition, 22(1), 18-35. https://doi.org/10.1080/07315724.2003.10719272
- Rampon, C., Volovitch, M., Joliot, A., & Vriz, S. (2018) Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants, 7(11), 159. https://doi.org/10.3390/antiox7110159
- Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., & Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem, 240, 212-221. https://doi.org/10.1016/j.foodchem.2017.07.095
- Rhoads, D. M., Umbach, A. L., Subbaiah, C. C., & Siedow, J. N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant physiology, 141(2), 357-366. https://doi.org/10.1104/pp.106.079129
- Rietjens, I. M., Boersma, M. G., de Haan, L., Spenkelink, B., Awad, H. M., Cnubben, N. H., ... & Koeman, J. H. (2002) The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environmental toxicology and pharmacology, 11(3-4), 321-333. https://doi.org/10.1016/s1382-6689(02)00003-0
- Scandalios, J.G. (2002). The rise of ROS. Trends in biochemical sciences, 27(9), 483-486. https://doi.org/10.1016/S0968-0004(02)02170-9
- Shao, H. B., Chu, L. Y., Shao, M. A., Jaleel, C. A., & Hong-mei, M. (2008). Higher plant antioxidants and redox signaling under environmental stresses. Comptes rendus. Biologies, 331(6), 433-441. https://doi.org/10.1016/j.crvi.2008.03.011
- Smirnoff, N. (2005) Antioxidants and reactive oxygen species in plants (pp. 169-177). Oxford: Blackwell.
- Smirnoff, N., & Arnaud, D. (2019) Hydrogen peroxide metabolism and functions in plants. New phytologist, 221(3), 1197-1214. https://doi.org/10.1111/nph.15488
- Song, W., Derito, C.M., Liu, M.K., He, X., Dong, M., & Liu, R.H. (2010) Cellular antioxidant activity of common vegetables. Journal of Agricultural and Food Chemistry, 58(11), 6621-6629. https://doi.org/10.1021/jf9035832
- Szalai, G., Kellos, T., Galiba, G., & Kocsy, G. (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Journal of Plant Growth Regulation, 28, 66-80. https://link.springer.com/article/10.1007/s00344-008-9075-2
- Van Breusegem, F., & Dat, J. (2006) Reactive oxygen species in plant cell death. Plant physiology, 141(2), 384-390. https://dx.doi.org/10.1104%2Fpp.106.078295
- Wikström, M., Krab, K., & Sharma, V. (2018). Oxygen activation and energy conservation by cytochrome c oxidase. Chemical reviews, 118(5), 2469-2490. https://doi.org/10.1021/acs.chemrev.7b00664
- Xu, D. P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., ... & Li, H. B. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International journal of molecular sciences, 18(1), 96. https://doi.org/10.3390/ijms18010096
- Yean-Yean, S., & Barlow, P.J. (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 88(3), 411-417. https://doi.org/10.1016/j.foodchem.2004.02.003
- Zhang, W., Zhu, Y., Liu, Q., Bao, J., & Liu, Q. (2017). Identification and quantification of polyphenols in hull, bran and endosperm of common buckwheat (Fagopyrum esculentum) seeds. Journal of Functional Foods, 38, 363-369. https://doi.org/10.1016/j.jff.2017.09.024