Larvicide and insecticide activity of the essential oil of Ocimum sanctum var. cubensis in the control of Musca domestica (Linnaeus, 1758), under laboratory conditions

Keywords: Ocimum tenuiflorum L, basil, control of M. domestica, insecticide, post-embryonic development.

Abstract

Essential oils have been considered as an important alternative facing synthetic pesticides. The control of the species Musca domestica is very important for public health due to their role as vector associated with Vibrio cholerae, Salmonella and Shigella, among other pathogens. The objective of this work was to evaluate the larvicidal and insecticidal efficacy of the essential oil of Ocimum sanctum var. cubensis, in the control of Musca domestica and its effect on the post-embryonic development of this species. The essential oil was applied topically in six concentrations to newly hatched larvae (1μL / larva). Mortality, interval length of each development period, as well as the weight of mature larvae were analyzed. An insecticidal bioassay was also carried out in adult flies. The essential oil of O. sanctum caused a slight reduction in the larval and pupal period for some of the concentrations evaluated. The time of development of the newly hatched larvae until the adult period was shortened in all the concentrations analyzed. The larvae of the control group were the heaviest. The effectiveness of the product in the control of the larvae of the flies of the species M. domestica was greater than 50%, except for those larvae treated with 80.25 mg/mL of the essential oil. The lethal concentration for adult insects LC50 was estimated at 9.41μg. Results demonstrated that the essential oil of O. sanctum has effect in all stages of the life cycle of M. domestica, extolling its potential as an effective insecticide against this species. 

Downloads

Download data is not yet available.

Author Biographies

Idelsy Chil-Núñez, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.

 Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.

Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba.

Projeto Capes (Ministério da Educação do Brasil) – MES (Ministerio de Educación Superior de Cuba).

Paloma Martins Mendonça, Universidad de Oriente, Santiago de Cuba, Cuba.

Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.

Projeto Capes (Ministério da Educação do Brasil) – MES (Ministerio de Educación Superior de Cuba). 

Mestrado Profissional em Ciências Ambientais, Universidade Severino Sombra – USS, Rio de Janeiro, RJ, Brazil.

Julio C. Escalona-Arranz, Universidad de Oriente, Santiago de Cuba, Cuba.

Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba.

Projeto Capes (Ministério da Educação do Brasil) – MES (Ministerio de Educación Superior de Cuba).

Carlos M. Dutok-Sánchez, Universidade Federal do Amapá

Projeto Capes (Ministério da Educação do Brasil) – MES (Ministerio de Educación Superior de Cuba).

Núcleo de Ciências Fisiológicas, Universidade Federal do Amapá, Campus Binacional do Oiapoque, Amapá, Brasil.

Frenkel Guisado Bourzac, Pontificia Universidad Católica de Valparaíso, Chile.

Laboratório de Genética y Genômica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Chile.

Margareth M. de Carvalho Queiroz, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.

Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.

Projeto Capes (Ministério da Educação do Brasil) – MES (Ministerio de Educación Superior de Cuba).

Mestrado Profissional em Ciências Ambientais, Universidade Severino Sombra – USS, Rio de Janeiro, RJ, Brazil.

References

Abbott, WS. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267.

Adenusi, A.A. and Adewoga, T.O.S. (2013). Studies on the potential and public health importance of non-biting synanthropic flies in the mechanical transmission of human enterohelminths. Trans R Soc Trop Med Hyg, 107(12), 812–818.

Aktar, M.W., Sengupta, D., Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol, 2(1), 1–12.

Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological effects of essential oils—a review. Food Chem Toxicol, 46(2), 446-475.

Bertoni, A.O. (2013). Insecticida natural para el control de Musca doméstica en base a aceites esenciales y sus componentes. PhD thesis, Universidad Católica de Córdoba.

Bosly, A.H. (2013). Evaluation of insecticidal activities of Mentha piperita and Lavandula angustifolia essential oils against house fly, Musca domestica L. (Diptera: Muscidae). Journal of Entomology and Nematology., 5(4), 50-54.

Burt, S. (2004). Essential oils: Their antimicrobial properties and potential applications in foods: A review. Int. J. Food Microbiol., 94(3), 223–253.

Chapman, R.F. (2003). Contact chemoreception in feeding by phytophagous insects. Ann. Rev. Entomol., 48, 455–484.

Chavasse, D. C., Shier, R. P., Murphy, O. A, Huttly, S.R.A, Cousens, S.N., and Akhtar, T. (1999). Impact of fly control on childhood diarrhoea in Pakistan: community-randomised trial. THE LANCET, 353 (2), 22-25.

Chil-Núñez, I., Escalona-Arranz J.C, Berenguer-Rivas C. A., Mendonça, P.M, Mateo-Pérez, K., Dutok-Sánchez, C.M, Cortinhas, L.B., Silva, C.F and Queiroz M.M.C. (2017). Chemical Composition and Toxicity of Ocimum sanctum L. var. cubensis Essential Oil Up-Growing in the Eastern of Cuba. International Journal of Pharmacognosy and Phytochemical Research, 9(7), 1021-1028.

Chil-Núñez, I., Mendonça, P., Escalona-Arranz J.C, Cortinhas, L., Dutok-Sánchez, C.M and Queiroz, M.M.C. (2018). Insecticidal effects of Ocimum sanctum var. cubensis essential oil on the diseases vector Chrysomya putoria. Journal of Pharmacy & Pharmacognosy Research, 6(3), 148-157.

Collinet-Adler, S., Babji, S., Francis, M., Kattula, D., Premkumar, P.S., Sarkar, R., Mohan, V. R., Ward, H., Kang, G., Balraj, V. and Naumovab, E.N. (2015). Environmental Factors Associated with High Fly Densities and Diarrhea in Vellore, India. Applied and Environmental Microbiology, 81(17), 6053-6058.

David, G., Linda, J., Gahanc, S.W, Baxtera, Jian-Zhou Zhao, Anthony, M., Shelton, F., Goulde, B., Tabashnikd, E. (2007). The diversity of Bt resistance genes in species of Lepidoptera. Journal of Invertebrate Pathology, 95(3), 192-197.

Edigenia, C.C., Arauä, J.O., Silveira, E.R., Lima, M.A.S., Neto, M.A, De Andrade, IL. and Lima, M.L.A. (2003). Insecticidal Activity and Chemical Composition of Volatile Oils from Hyptis martiusii Benth. J. Agric. Food Chem., 51(13), 3760−3762.

Environews Forum. (1999). Killer environment. Environ Health Perspect, 107(2), 62–63.

Georghiou, G.P. (1994). Principles of insecticide resistance management. Phytoprotection, 75(4), 51-59.

Graczyk, T. K, Knight, R., Gilman, R.H. and Cranfield, M.R. (2001). The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect., 3(3), 231-5.

Greenberg, B. Flies and Disease. (1973). Vol. II: Biology and Disease Transmission. New Jersey: Princeton University Press; 447 pp.

Hadi, J.K., Salam, Y.B., Hoda, R.A., Lassi, Z.S. and Bhutta, Z.A. (2018). Fly control to prevent diarrhoea in children. Cochrane Database of Systematic Reviews. 12(12). Available from: https://www.researchgate.net/publication/329718894_Fly_control_to_prevent_dia rrhoea_in_children [accessed May 22 2019].

Hantan, I. and Zaki, M.Z. (1998). Development of environment friendly insect repellents from the leaf oils of selected Malaysian plants. Rev. Biod. Environ. Cons, 1, 1-7.

Isman, M.B. (1997). Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica Rehovot, 25(4), 339- 344.

Kasrati, A., Alaoui Jamali, C., Bekkouche, K., Spooner-Hart, R., Leach, D. and Abbad, A. (2015). Chemical characterization and insecticidal properties of essential oils from different wild populations of Mentha suaveolens sub sp. timija (Briq.) Harley from Morocco. Chem Biodivers. ,12(5),823-31.

Khan, H.A.A. (2017). Resistance to pyrethroid insecticides in house flies, Musca domestica L., (Diptera: Muscidae) collected from urban areas in Punjab. Pakistan Parasitology Research., 116 (12), 3381–3385.

Kumar, P., Mishra, S., Malik, A. and Satya, S. (2011). Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the house fly. Musca domestica. Med. Vet. Entomol., 25(3), 302-310.

Kumar, P., Mishra, S., Malik, A. and Satya, S. (2013). Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol. Res, 112(1), 69–76.

Lambert, R.J.W.; Skandamis, P.N.; Coote, P.; Nychas, G.J.E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol., 91(3), 453–462.

Leblanc, L., Vargas, R.I., Mackey, B., Putoa, R., Piñero, J.C. (2011). Evaluation of cue-lure and methyl eugenol solid lure and insecticide dispensers for fruit fly (Diptera: Tephritidae) monitoring and control in Tahiti. Florida Entomol, 94 (3), 510-516.

Lindeberg, Y.L., Egedal, K., Hossain, Z., Phelps, M., Tulsiani, S., Farhana, I., Begum, A. and Jensen, M.P. K. (2018). Can Escherichia coli fly? The role of flies as transmitters of E. coli to food in an urban slum in Bangladesh. Tropical Medicine and International Health, 23 (1), 2-9.

Miresmailli, S. and Isman, M.B. (2014). Botanical insecticides inspired by plant–herbivore chemical interactions. Trends in Plant Science, 19 (1), 29–35.

Obeng-Ofori, D. and Reichmuth, Ch. (1997). Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. International Journal of Pest Management, 43(1), 89-94.

Pattanayak, P., Behera, P., Das, D. and Panda, S.K. (2010). Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Rev, 4(7), 95–105.

Pavela, R. (2008). Insecticidal properties of several essential oils on the house fly (Musca domestica). Phytother. Res., 22(2), 274-278.

Peter, R.J., Van den Bossche, P., Penzhorn, B.L., Sharp, B. (2005). Tick, fly, and mosquito control—Lessons from the past, solutions for the future. Vet Parasit, 132(3-4), 205–215.

Pinto, Z.T, Fernández-Sánchez, F., Santos, A.R., Amaral, A..C, Ferreira, J.L., Escalona-Arranz, J.C. and Queiroz, M.M.C. (2015). Effect of Cymbopogon citrates (Poaceae) oil and citral on post-embryonic time of blowflies. J. Entomol. Nematol, 7(6), 54-64.

Prakash, P. and Gupta, N. (2005). Therapeutic uses of Ocimum sanctum Linn (tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J Physiol Pharmacol, 49(2), 125–131.

Rashid, Md.H.Al., Banerje, A. and Jyoti, M.N. (2013). The queen of herb with potent therapeutic constituent in various disease states: A reappraisal. International Journal of Phytomedicine, 5 (2), 125–130.

Ryan, M.F. and Byrne, O. (1998). Plant-Insect coevolution and inhibition of acetylcholinesterase. Journal of Chemical Ecology, 14, 1965-1975.

Sawabe, K., Hoshino, K., Isawa, H. et al. (2006). Detection and isolation of highly pathogenic H5N1 avian influenza a viruses from blow flies collected in the vicinity of an infected poultry farm in Kyoto, Japan. Am. J. Trop. Med. Hyg., 75(2), 327–332.

Sawabe, K., Hoshino, K., Isawa, H., et al. (2011). Blow Flies Were One of the Possible Candidates for Transmission of Highly Pathogenic H5N1 Avian Influenza Virus during the 2004 Outbreaks in Japan. Influenza Research and Treatment. ID 652652. doi:10.1155/2011/652652.

Schowalter, T.D. (2006). Insect ecology: an ecosystem approach. San Diego: Academic Press, 572p.

Shah, R.M., Shad SA, Abbas N. (2016). Methoxyfenozide resistance of the housefly, Musca domestica L. (Diptera: Muscidae): cross-resistance patterns, stability and associated fitness costs. Pest Manag Sci, 73(1):254-261, DOI 10.1002/ps.4296.

Shono, T. and Scott, J.G. (2003). Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1. Pest. Biochem. Physiol., 75(1-2), 1-7.

Sinthusiri, J. and Soonwera, M. (2013). Insecticides against the housefly Musca domestica L. Southeast Asian J. Trop. Med. Public Health, 44, 28-39.

Srinivasan, R., Jambulingam, P. and Gunasekaran, K. (2008). Boopathidoss PS Tolerance of housefly, Musca domestica (Diptera: Muscidae) to dichlorovos (76% EC) an insecticide used for fly control in the tsunami-hit coastal villages of southern India. Acta Tropica, 105(2), 187–190.

Stroh, J., Wan, M.T., Isman, M.B and Moul, D.J. (1998). Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull Environ Contam Toxicol, 60, 923-930.

Sukontason, K.L., Narongchal, P., Sripakdee, D., Boonchu, N., Chaiwong, T, Ngern-Klun, R., Piangjai, S. and Sukontason, K. (2005). First report of human myiasis caused by Chrysomya megacephala and Chrysomya rufifacies (Diptera: Calliphoridae) in Thailand, and its implication in forensic entomology. Journal of Medical Entomolgy, 42(4), 702–704.

Tawatsin, A., Asavadachanukorn, P., Thavara, U., Wongsinkongman, P., Bansidhi, J., Boonruad, T. et al. (2006). Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian J Trop Med Public Health, 37(5), 915-931.

Themanma, C.A., Etusim, P.E., Kalu M.K., Adindu, R.U., Iruoha, A. (2013). Diptera: the order of great public health nuisance. Journal Env. Sci. Tox., 2(5), 135-143.

Vargas, R.I., Mau, R.F., Stark, J.D., Piñero, J.C., Leblanc, L. and Souder, S.K. (2010). Evaluation of methyl eugenol and cue-lure traps with solid lure and insecticide dispensers for fruit fly monitoring and male annihilation in the Hawaii Areawide Pest Management Program. Journal Econ Entomol, 103(2), 409-15.

Viegas-Junior, C. (2003). Terpenos com atividade inseticida: uma alternativa para o controle químico de insetos. Quim. Nova, 26(3), 390-400.

WHO. (1990). Public Health Impact of Pesticides Used in Agriculture. Geneva: World Health Organization, 88.

Wiegmann, B.M, Trautwein, M.D, Winkler, I.S, Barr, N.B, Kim J.W, Lambkin C, Bertone M.A. et. al, (2004). Natural indeed: Are natural insecticides safer and better than conventional insecticides? Illinois Pesticide Review, 17(3), 1-8
Published
2020-11-23
How to Cite
Chil-Núñez, I., Mendonça, P., Escalona-Arranz, J., Dutok-Sánchez, C., Bourzac, F., & de Carvalho Queiroz, M. (2020). Larvicide and insecticide activity of the essential oil of Ocimum sanctum var. cubensis in the control of Musca domestica (Linnaeus, 1758), under laboratory conditions. Amazonia Investiga, 9(34), 24-33. https://doi.org/10.34069/AI/2020.34.10.3
Section
Articles
Bookmark and Share