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Abstract 
 
Primary purpose of the article is to develop 
outlier robust designs. As a matter of fact, 
negative effect of outliers in any experimental 
settings is established where the outliers at any 
specific design point can destroy the features of 
the design for which it is being developed. It is 
attempted here in this article to develop a version 
of robustness for central composite designs 
which may protect it for outliers by introducing 
the idea of minimax outlying effect. This involves 
the calculation of the degree of outlying effect(s) 
outlier(s) may produce and then minimize the 
maximum of these outlying effects in an attempt 
to equalize the influence of all design points. On 
comparison, these outlier robust designs are 
proved to be more optimal, on the scales of A, D, 
and E optimalities, against existing conventional 
rotatable, orthogonal, and other such designs. 
The outlier robust designs, developed here, are 
suitable for settings prone to outliers where 
conventional designs fail to represent and analyze 
the processes and systems.  
  
Keywords: Central Composite Designs, Robust 
Designs, Outliers, Minimax. 
 
 

  Resumen  
 
El objetivo principal del artículo es desarrollar 
diseños robustos atípicos. De hecho, el efecto 
negativo de los valores atípicos en cualquier 
configuración experimental se establece donde 
los valores atípicos en cualquier punto de diseño 
específico pueden destruir las características del 
diseño para el que se está desarrollando. En este 
artículo se intenta desarrollar una versión de 
robustez para los diseños compuestos centrales 
que pueden protegerlo de los valores atípicos 
mediante la introducción de la idea del efecto 
periférico minimax. Esto implica el cálculo del 
grado de efecto (s) externo (s) que puede 
producir un valor atípico y luego minimizar el 
máximo de estos efectos externos en un intento 
de igualar la influencia de todos los puntos de 
diseño. En comparación, se demuestra que estos 
diseños robustos atípicos son más óptimos, en 
las escalas de las optimidades A, D y E, frente a 
los diseños convencionales existentes, 
ortogonales, rotativos y otros similares. Los 
diseños robustos atípicos, desarrollados aquí, 
son adecuados para configuraciones propensas a 
los valores atípicos en los que los diseños 
convencionales no representan ni analizan los 
procesos y sistemas. 
 
Palabras claves diseños compuestos centrales, 
diseños robustos, valores atípicos, Minimax. 
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Resumo
 
Objetivo principal do artigo é desenvolver projetos robustos outlier. De fato, o efeito negativo de outliers 
em qualquer ambiente experimental é estabelecido onde os outliers em qualquer ponto de design 
específico podem destruir os recursos do design para o qual ele está sendo desenvolvido. Neste artigo, 
tenta-se desenvolver uma versão de robustez para projetos compostos centrais que possam protegê-lo de 
outliers, introduzindo a ideia de efeito periférico minimax. Isso envolve o cálculo do grau de efeito (s) 
outlier (s) outlier (s) pode produzir e, em seguida, minimizar o máximo desses efeitos periféricos em uma 
tentativa de equalizar a influência de todos os pontos do projeto. Em comparação, esses designs robustos 
discrepantes são comprovadamente mais otimizados, nas escalas de otimalidades A, D e E, contra os 
designs convencionais rotacionais, ortogonais e outros existentes. Os designs robustos outlier, 
desenvolvidos aqui, são adequados para configurações propensas a outliers em que projetos convencionais 
não representam e analisam os processos e sistemas. 

 
Palavras-chave: projetos compostos centrais, projetos robustos, outliers, minimax. 

 
Introduction 
 
In layman’s terms, using the language of noted 
physicist Stephen Hawkins, an outlier is “an 
observation which deviates so much from the 
other observations as to arouse suspicions that it 
was generated by a different mechanism”. 
Outliers are everywhere. Experience shows 
that, in a typical experimenting setting, 1 to 10% 
of all observations are surprising in one way or 
the other and should be termed as outliers. It 
may be a result of keypunch error, misplaced 
decimal point, recording or transmission error, 
unusual happening such as earthquake, fire, or 
members of a different population slipping into 
the sample by mistake or unknowingly. Each 
result in outliers. A usual approach is to discard 
such suspicious observations by labelling them 
erroneous. However, as Festing and Altman 
(2002) put it, such observations should not be 
discarded unless there is independent evidence 
that the observation is incorrect. Further a 
seemingly unusual observation is not necessarily 
being erroneous all the time. It may be an 
indication of something unusual, hitherto 
unknown dimension. The current paper is 
written under the same assumption that no data 
point should be discarded. While techniques and 
methods should be devised to accommodate 
such surprising observations. It is attempted here 
to develop a technique which is robust enough 
to anticipate outliers in the domain of 
experimental designs.  
 
Irrespective of the nature of these surprising 
observations, data analysis has always suffered 
because of these. There are numerous examples 
available in the academic literature showing how 
outliers ruin the classical statistical analysis. 
Whole complexion of the data, and of its 
interpretation, changes because of these outliers 

(Siddiqi, 2003). This drives the analyst to think 
seriously about these observations. The 
statistical literature seems to be divided between 
(i) rejecting, and (ii) accommodating outliers.  
 
Peirce (1852), Peirce (1877) was probably the 
first who put forward some statistical reasoning 
for idea of deleting observation on the name of 
wrongly recorded observations. He proposes to 
delete observations when the probability of the 
system of errors obtained by retaining them is 
lesser than that of rejecting them multi- plied by 
the probability of making so many, and no more, 
wrongly recorded observations. This opens the 
gate of providing statistical excuses for such 
deletions; Gould (1855), Winlock (1856), 
Chauvenet (1960), Saunder (1903), Irwin (1925), 
Thompson (1935), Student (1927), Dixon 
(1950), Grubbs (1950), Chang et al. (2005) just a 
few names in the list of authors who advocate a 
rejection of outliers by labelling them to be 
erroneous observations. Beckman and Cook 
(1983), Barnett and Lewis (1964), Knorr et al. 
(2000), Bay and Schwabacher (2003), Cousineau 
and Chartier (2015) present an excellent 
commentary on different techniques to identify, 
detect and then delete these outliers. Broadly 
speaking, deleting outliers means the rejection of 
original observations.  
 
The other school of thought, which attempts to 
accommodate outliers by devising different 
techniques. Probably, it was Glaisher (1873), 
Glaisher (1874) where the concept of 
accommodating outliers was discussed with 
acceptable statistical details. He expounded the 
idea of differing distributions for the observations 
coming out from a single experiment by 
assuming that each observation came from a 
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normal distribution with unknown means and 
unequal variances. Using a scheme of iterative 
re-weighted least squares, obtained an estimate 
for the mean. Irrespective of the fact that the 
assumptions are too big to meet, this idea of 
iterative re- weighted least squares is the 
precursor of many techniques used today. The 
also gives birth to the idea of robust regression 
where attempts are made to develop models 
that can automatically and intrinsically off-set the 
negative effects of outliers, if there exist any. 
These models work on the methodology of 
down weighing an out weigh observation so that 
all observations have identical weights. 
Newcomb (1886) puts the iterative weighting of 
observations to sounder basis by suggesting a 
mixed system of observation of changing 
variances in which the mean value is estimated by 
weighting the observation. Then comes the 
Edgeworth (1887) who hypothesizes three 
models for outliers and illustrates each using 
Monte Carlo simulation methods. Daniell (1920) 
modified the base of weights by using sampling 
distribution with weights decreasing with the size 
of deviation from the mean for a heavy tailed 
normal distribution.  
 
The idea of iterative re-weighted least squares 
culminates into four broad types of robust 
estimators in the domain of robust regression. (i) 
L estimators, which involves weighing of order 
statistics. It is primarily non-parametric in nature 
and very close to distance based upon ranks of 
observations. (ii) M estimators, which involves 
the weighing of residuals, instead of 
observations. (iii) Bayesian estimators which 
makes use of priori and posteriori probability 
distribution instead of weights, and (iv) a hybrid 
method consisting of outright rejection followed 
by estimation (weights = 0 or 1) with the 
emphasis on the performance of the estimator. 

Box and Draper (1975) introduced their version 
of robust design by minimizing the discrepancy 
caused by the outlier(s). Despite computational 
complexity, their version of the robust design has 
conceptual appeal. Siddiqi (2003) has compared 
these four estimators in the domain of designed 
experiments for a better, or at least optimum 
estimator in a particular situation. Siddiqi (2008), 
Siddiqi (2011) developed designs robust to 
outliers using minimax criterion of Akhtar and 
Prescott (1986). The designs show many 
desirable properties besides robustness and 
alphabetic optimality but, unfortunately, their 
robustness was limited to only one outlier. 
 
The current article discusses the design 
robustness for centre composite designs (CCD) 
as illustrated in Figure a. These designs are 
developed by Box and Hunter (1957) for 
analyzing response surfaces and are special 
designs having three distinct types of points, (i) 
factorial points, (f), coming primarily from some 
known full, or fractional, balanced or unbalanced, 
orthogonal or non-orthogonal, factorial design, 
(ii) axial points, (a), at a distance  from the 
centre, number of which are a multiple of 
factors, and (iii) a few central points, (c). This 
makes a CCD(f,a,c) design. Curious reader 
should be referred to Box and Draper (1987), 
Montgomery and Myers (1995) for more details 
on response surfaces and central composite 
designs. Figure a shows a typical CCD(23, a,1) 
where a 22 full factorial design is augmented with 
2×2 = 4 axial and a single central point. The 
design is a cuboid, developed by 3 factors, whose 
two levels are shown by dots at the edges of the 
cuboid, the four axial points are the axes, while 
the single central point is shown at the centre. 
The following sections shows how this design is 
made robust for outliers.

 
 

 
Figure a:A Typical Central Composite Design Developed with 23 Complete factorial Design & 

Augmented with Central, and Axial and Points 
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The very rationale of CCD are the optimal 
designs in different scenarios. The flexible axial 
distance , the option of replication, the 
inclusion of design points at the centre of the 
cube, etc. all these characteristic features of the 
design are making them the most attractive 
choice in any manufacturing setting. However, 
the outliers are capable enough to mar these 
attractive features. All the different versions of 
these designs, like Rotatable, Orthogonal, 
Optimal, etc. which are developed to give results 
even in compromised situations seem to fail in 
the presence of outliers. It is attempted here, in 
the article, to develop outlier robust design, 
based on the idea of minimax, which can retain 
the attractive features of the CCD designs. 
 
Outlier Robust Minimax Designs 
 
The designs are based upon the philosophy of 
robust regression. As has been discussed earlier 
in previous section, the designs attempt to 
accommodate outliers instead of deleting them. 
In simple language, these designs are developed 
by minimizing the maximum outlying effect. 
These designs would ensure that no design point 
has an effect large enough to disturb the design. 

More specifically, the minimax designs attempt 
to  
 

1. calculate outlying effects of all design 
points,  

2. sort these outlying effects in decreasing 
order of magnitudes,  

3. lower these larger effects, by 
intelligently changing the design, up to 
the extent where all the design points 
have identical outlying effects.  

 
The philosophy of minimax is not unique to 
outliers. Akhtar and Prescott (1986) has used this 
philosophy to develop design robust to missing 
observations. Sitter (1992) has used this 
philosophy to develop designs robust to poor 
estimates. Heo et al. (2001), Mukerjee and Huda 
(1985), Wiens (1990), Wiens (1992) use this 
criterion to develop restricted designs for linear 
regression. The list of such authors is very long, 
each using this philosophy to develop design to 
circumvent some un-wanted. 
 
- Developing Outlier Robust Minimax Designs. 
Consider a classical response surface model of 
the form

 
 

𝑦 = 𝑋𝛽 + 𝜀 
 
Consider the additive setup, the y is an (n×1) 
vector of response variable, X is the (n×p) 
known design matrix of the rank p (p ≤ n), β is a 
(p × 1) vector of unknown regression 
parameters, while ε is an (n × 1) vector of 
residuals assumed to be normally distributed 
with zero mean and σ2 variance.  

 
For a CCD(f, a, c), the X matrix is composed of 
three types of points; the factorial, the axial 
whose numbers are simply a multiple of factorial 
points, and the central. Further, there may exists 
replications of either factorial, axial or both. So,

  

𝑛 = (𝑓 × 𝑟𝑓) + (𝑎 × 𝑟𝑎) + 𝑐

= (𝑓 × 𝑟𝑓) + (2 × 𝑓 × 𝑟𝑎) + 𝑐

= (𝑟𝑓 + 2𝑟𝑎)𝑓 + 𝑐

 

 
where rf and ra denotes the replications for factorial and axial parts respectively. Similarly,  
 

𝑝 = 1 +∑𝑓

𝑘

𝑖=1

+ (
𝑓
2
) + − − −+ (

𝑓
𝑓
)

= 1 + 𝑘𝑓 + (
𝑓
2
) + − − −+ (

𝑓
𝑓
)

 

 
with k denotes the degree of the polynomial used in the response surface, defined above.  
 
Provided the type and nature of the regression 
function is correct, the response variable y is 
influenced only by the given independent 

variables in X. The information matrix, X′X (due 
to Fisher (1922), developed by these 
independent variables, is a repository of this 
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influence (Chatterjee and Hadi, 1986, Cook and 
Weisberg, 1980). Atkinson et al. (2014), Gao and 
Yang (2015), Hoaglin and Welsch (1978), Jauffret 
(2007) among others, use different variants, 
mostly partial and based upon some subset, of 
this information matrix for extracting partial 
information about the subset of the whole data. 

Siddiqi (2008), Siddiqi (2011) use the information 
matrix to develop outlier robust designs by 
introducing minimax criteria to develop minimax 
designs. If Oj denotes the outlying effect of an 
outlier, happens to be the jth design point, its 
value, as calculated by Siddiqi (2008), is given by

 
 

𝑂𝑗 =
|𝑋′𝑋| − |𝑋′(𝑗)𝑋(𝑗)|

|𝑋′𝑋|

= 1 −
|𝑋′(𝑗)𝑋(𝑗)|

|𝑋′𝑋|

 

 
Using Rao and Toutenburg (1995) 
 

|𝑋′(𝑎)𝑋(𝑎)| = |𝑋′𝑋 − 𝑥′𝑎𝑥𝑎|

= |𝑋′𝑋||1 − 𝑥𝑎(𝑋′𝑋)
−1𝑥′𝑎|

 

 
This implies, the outlying effect of a single outlier, at the jth design point, is given by 
 

𝑂𝑗 = 1 −
|𝑋′𝑋||1 − 𝑥𝑗(𝑋′𝑋)

−1𝑥′𝑗|

|𝑋′𝑋|

= ℎ𝑗

 

 
with hj as the jth element in the main diagonal of 
the HAT matrix, defined by Hoaglin and Welsch 
(1978) and given by X’(X’X)-1 X. Continue with 

the idea, if Ojk denotes the outlying effect of jth 
and kth two design points, its value in terms on 
information matrix is given by  

 

𝑂𝑗𝑘 =
|𝑋′𝑋| − |𝑋′(𝑗𝑘)𝑋(𝑗𝑘)|

|𝑋′𝑋|

= 1 −
|𝑋′(𝑗𝑘)𝑋(𝑗𝑘)|

|𝑋′𝑋|

 

 
Using Rao and Toutenburg (1995) 
 

𝑂𝑗𝑘 = 1−
|𝑋′(𝑗)𝑋(𝑗) − 𝑥′(𝑘)𝑥(𝑘)|

|𝑋′𝑋|

= 1 −
|𝑋′(𝑗)𝑋(𝑗)| |1 − 𝑥′(𝑘)(𝑋′(𝑗)𝑋(𝑗))

−1
𝑥(𝑘)|

|𝑋′𝑋|

= 1 −
|𝑋′𝑋||1 − 𝑥𝑗(𝑋′𝑋)

−1𝑥′𝑗|

|𝑋′𝑋|
|1 − 𝑥′(𝑘)(𝑋′(𝑗)𝑋(𝑗))

−1
𝑥(𝑘)|

= 1 − |1 − 𝑥𝑗(𝑋′𝑋)
−1𝑥′𝑗| |1 − 𝑥′(𝑘)(𝑋′(𝑗)𝑋(𝑗))

−1
𝑥(𝑘)|

 

 
 
Using Rao and Mitra (1973), Rao and Rao (1998) 
 

(𝑋′(𝑎)𝑋(𝑎))
−1
= (𝑋′𝑋)−1 +

(𝑋′𝑋)−1𝑥′𝑎𝑥𝑎(𝑋′𝑋)
−1

1 − 𝑥𝑎(𝑋′𝑋)−1𝑥′𝑎
 

This implies to  
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𝑂𝑗𝑘 = 1 − |1 − 𝑥𝑗(𝑋′𝑋)
−1𝑥′𝑗| |1 − 𝑥′(𝑘) {(𝑋′𝑋)

−1 +
(𝑋′𝑋)−1𝑥′𝑗𝑥𝑗(𝑋′𝑋)

−1

1 − 𝑥𝑗(𝑋′𝑋)−1𝑥′𝑗
} 𝑥(𝑘)|

= 1 − |1 − 𝑥𝑗(𝑋′𝑋)
−1𝑥′𝑗| |1 − 𝑥

′
(𝑘)(𝑋

′𝑋)−1𝑥(𝑘) −
𝑥𝑘(𝑋′𝑋)

−1𝑥′𝑗𝑥𝑗(𝑋′𝑋)
−1𝑥′(𝑘)

1 − 𝑥𝑗(𝑋′𝑋)−1𝑥′𝑗
|

 

 
Using the symbiology of Hoaglin and Welsch (1978) 
 

𝐻 = 𝑋′(𝑋′𝑋)−1𝑋 
 
which is usually termed as HAT matrix in 
statistical literature. It is a positive definite, 
symmetric matrix (Eubank, 1984) with 
 

ℎ𝑎𝑎 = 𝑥𝑎(𝑋′𝑋)
−1𝑥′𝑎

ℎ𝑎𝑏 = 𝑥𝑎(𝑋′𝑋)
−1𝑥′𝑏

 

 
as being diagonal and off-diagonal components of the HAT matrix, respectively, 
 

𝑂𝑗𝑘 = 1− (1 − ℎ𝑗𝑗) {1 − ℎ𝑘𝑘 −
ℎ𝑗𝑘
2

1 − ℎ𝑗𝑗
}

= 1 − (1 − ℎ𝑗𝑗)(1 − ℎ𝑘𝑘) + ℎ𝑗𝑘
2

 

 
which gives the combined outlying effect of two 
design points for a CCD(f,a,c). As per the 
philosophy of minimax designs, this is to be 
calculated for each pair of the design points to 
find an axial distance for which it is identical for 
all these pairs. 
 
- Some Properties of Ojk 
 

1. It is positive for all values of j and k. 
2. 0 ≤ 𝑂𝑗𝑘 ≤ 1 

3. Upper bounds for Ojk depends upon 
the replication of the design; more the 
replication lesser is the upper bounds.  

4. Ojk remains the same for all replications 
of factorial points (Siddiqi, 2008), for all 
replications of axial points, and for all 
center points, especially when the 
factorial design in the CCD is complete. 
However, for fractional factorials, these 
effects may be different.   

 
Consider a central composite design developed 
for a 22 complete factorial design and augmented 
with 2 × 2 = 4 axial point and 2 (say) central 
points where each of the axial point lies at a 
distance a from the center, i.e., CCD (22,a,2). 
The design matrix, X, for such a design, using 
Box and Hunter (1957), is given by

  
 

𝑋 =

(

 
 
 
 
 
 
 

1 −1 −1 1 1 1
1 1 −1 1 1 −1
1 −1 1 1 1 −1
1 1 1 1 1 1
1 𝑎 0 𝑎2 0 0
1 −𝑎 0 𝑎2 0 0
1 0 𝑎 0 𝑎2 0
1 0 −𝑎 0 𝑎2 0
1 0 0 0 0 0
1 0 0 0 0 0)

 
 
 
 
 
 
 

 

 
 
The actual realization of the design matrix 
depends upon the axial distance, a. The outlying 
effect of the design points may be calculated by 
using the expressions developed earlier in this 
section.  

 
As a matter of fact, these outlying effects are 
calculated on the basis of the HAT matrix; the 
outlying effect of any single design point happens 
to be the respective diagonal term, while the 
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outlying effect of two design point is a linear 
combination of diagonal and off-diagonal terms.  
There is a Mathematica code available in 
Appendix A to facilitate the calculations involved 
in the development of this hat matrix. For the 

design CCD (22,a,2), the hat matrix in this case 
is a (10 × 10) matrix, with each component 
requires the realization of the axial distance a, is 
given by

 
 

𝐻 =

(

 
 
 
 
 

5𝑎6 + 6𝑎4 − 40𝑎2 + 96

12𝑎6 − 8𝑎4 − 16𝑎2 + 96
−

𝑎6

12𝑎4 − 32𝑎2 + 48
…

𝑎2(𝑎2 − 2)

6𝑎4 − 16𝑎2 + 24

−
𝑎6

12𝑎4 − 32𝑎2 + 48

5𝑎6 + 6𝑎4 − 40𝑎2 + 96

12𝑎6 − 8𝑎4 − 16𝑎2 + 96
…

𝑎2(𝑎2 − 2)

6𝑎4 − 16𝑎2 + 24
⋮ ⋮ ⋱ ⋮

𝑎2(𝑎2 − 2)

6𝑎4 − 16𝑎2 + 24

𝑎2(𝑎2 − 2)

6𝑎4 − 16𝑎2 + 24
−

𝑎4 + 4

6𝑎4 − 16𝑎2 + 24)

 
 
 
 
 

 

 
 
As a matter of interest, each component of this 
matrix is associated with some design point of 
the CCD(22, a,2); the diagonal components with 
a single design point, while the off-diagonal 
components with two design points. More 
specifically, first four diagonal elements are 
representing factorial part, second four the axial 
part, and the last two diagonal elements are 
representing the two replications of central part 
of the CCD(22, a,2). Owing to the symmetric 
nature of the HAT matrix lower off-diagonal 
points are similar to upper off-diagonal 
components. Further, due to a peculiar structure 
of the design, as stated earlier, the diagonal 
elements corresponding to factorial points are 
identical, the diagonal elements corresponding to 
axial points are identical to each other, and the 
diagonal elements corresponding to central 
points are also identical to each other. This 
results in these six different types of outlying 
effects, 
 

• ff : Ojk is calculated for pairs of 
design points where both points 
belong to the factorial portion of 
the CCD,  

• aa : Ojk is calculated for pairs of 
design points where both points 
belong to the axial portion of the 
CCD,  

• cc : Ojk is calculated for pairs of 
design points where both points 

belong to the central portion of 
the CCD,  

• fa : Ojk is calculated for pairs of 
design points where points 
belong to factorial and axial 
portions of the CCD,  

• fc : Ojk is calculated for pairs of 
design points where points 
belong to factorial and central 
portions of the CCD,  

• ac : Ojk is calculated for pairs of 
design points where points 
belong to axial and central 
portions of the CCD,  

 
The outlier robust minimax design attempts to 
minimize the maximum outlying effects to make 
them identical. This would not let any design 
point to be outlying enough to destroy the 
properties of the design. As a matter of interest, 
Ojk would not necessarily be the same for all 
factorial design points. As a matter of fact, for full 
factorial designs it would be the same while for 
fractional factorial, confounded, split plot designs 
it would not be the same. Similarly, it would not 
be the same for all axial or central design points. 
This requires to investigate the maximas for each 
of the type of design effects. The Mathematica 
code, in Appendix A, also helps in digging out 
these maximas. Table 1 shows these maximas for 
different combinations of design points for CCD 
(22, a,2).
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Table 1. Expressions Showing the Maximas for Different Types of Design Effects 
 

Design Effect Maxima 

ff 
5𝑎6 − 4𝑎4 − 8𝑎2 + 48

6𝑎6 − 4𝑎4 − 8𝑎2 + 48
 

fa 
6𝑎8 + 6𝑎6 + 𝑎5 − 14𝑎4 + 2𝑎3 + 24𝑎2 + 96

2(𝑎2 + 2)2(3𝑎4 − 8𝑎2 + 12)
 

fc 
3𝑎6 + 14𝑎4 − 72𝑎2 + 192

8(3𝑎6 − 2𝑎4 − 4𝑎2 + 24)
 

aa 
3𝑎8 + 4𝑎6 − 11𝑎4 + 22𝑎2 + 32

(𝑎2 + 2)2(3𝑎4 − 8𝑎2 + 12)
 

ac 
6𝑎6 − 9𝑎4 + 7𝑎2 + 26

6𝑎6 − 4𝑎4 − 8𝑎2 + 48
 

cc 
𝑎4 + 4

3𝑎4 − 8𝑎2 + 12
 

 
 

All these expressions in Table 1 are driven by the 
axial distance, a, as all of these expressions are 
some polynomial of a. Fig. 2 is the visual 
demonstration of these maximas. Each of the 
subfigure, from 2(a) to 2(f), is drawn for one of 
the maxima shown in Table 1 where the 
horizontal axis measures the axial distance, a 
while the vertical axis shows how the outlying 

effect changes with a. It is quite interesting to 
note that each of these sub-figures are non-linear 
in nature and shows parabolic curves. This 
implies that the outlying effect is neither 
increasing nor decreasing continuously with 
changing a and their exist a maxima, or minima, 
for each of these effects.

 
 
 
 

 

(a) Both Factorial Points 

 

(b) Factorial & Axial Points 
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(c) Factorial & Central Points 

 

(d) Both Axial Points 

 

(e) Axial & Central Points 

 

(f) Both Central Points 

Figure 2. Outlying Effects for Different 
Combinations of Design Points As Varied with 
Axial Distance 
 
∑ ∑ 𝑂𝑗𝑘 = 𝑓(𝑎, 𝑝)

𝑛
𝑘≠𝑗

𝑛
𝑗  due to Cook and 

Weisberg (1982) who discussed many properties 
of the hat matrix. In other words, for a constant 
p, the only source of variation in ∑ ∑ 𝑂𝑗𝑘 =

𝑛
𝑘≠𝑗

𝑛
𝑗

𝑓(𝑎, 𝑝) is a. This implies that any change in Ojk 
for some values of j and k would be offset by a 
similar but opposite change in Ojk for other 
values of j and k, i.e., lowering one effect 
implicitly off-set by an increase in some other 
effect. It is also explicit in Fig. 3 which is showing 
all these curves on a single graph.

 
 

 
Figure 3. Outlying Effects for Different Combinations of Design Points As varied with Axial Distance 

 
The minimax design requires a value for a at 
which either  
 
1. all the outlying effects are equal, or 
2. as many as possible outlying effects are 
identical while all remaining are lesser.  

 
As a matter of fact, the situation 1 is rarely 
possible and one has to dig out for the second 
scenario. This second situation calls for a very 
complex non-linear programming modeling. 
Table 2 shows all such combinations for the 
CCD(22,a,2).
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Table 2. Minimax Design 
 

Design 

Points 

Axial 

Distance 

Outlying 

Effect 
, both 

ff fa 1.11382 0.95598 0.744405,0.812556,0.827658,0.859052,0.95598,0.95598 
ff fc    

ff aa 1.41421 0.875001 0.8125,0.8125,0.875,0.875,0.950444,1. 
ff ac 1.58563 0.837759 0.781149,0.837758,0.837758,0.910095,0.951258,0.951921 
ff cc 1.81761 0.814383 0.740872,0.814383,0.814383,0.860926,0.94386,0.956451 
  1.22733 0.927861 0.773111,0.83424,0.842872,0.927862,0.927862,0.952652 
fa fc    
fa aa 2 0.96032 0.714286,0.714286,0.809524,0.875,0.960317,0.960317 
fa ac    
fa cc 1.58434 0.837759 0.781386,0.837601,0.83797,0.90986,0.951902,0.951902 
fa cc 1.26235 0.951902 0.781386,0.837601,0.841547,0.918042,0.951902,0.951902 
fc aa 1.2515 0.839253 0.778858,0.839254,0.839254,0.921123,0.944901,0.952118 
fc ac 1.41421 0.812501 0.8125,0.8125,0.875,0.875,0.950444,1. 
fc cc 2 0.71429 0.714286,0.714286,0.809524,0.875,0.960317,0.960317 
fc cc 2.14229 0.696754 0.751808,0.817698,0.855077,0.855077,0.949601,0.955032 

aa ac    
aa cc 1.64328 0.920068 0.770626,0.829331,0.844382,0.920068,0.920068,0.952899 
aa cc 1.09522 0.809299 0.739524,0.809299,0.809299,0.861639,0.956633,0.959867 
ac cc 1.75086 0.855079 0.751808,0.818514,0.855077,0.855077,0.935829,0.955032 
ac cc 1 0.71429 0.714286,0.714286,0.793651,0.875,0.960317,0.97619 

 
The table is made up of values as produced by 
the Mathematica code, given in Appendix A. The 
first two columns shows the design point’s 
combination while the third shows a sorted list, 
in increasing order of magnitudes, of all outlying 
effects at an axial distance where the design 
point’s in first two columns interact. Since the list 
is sorted, the last value shows the maximum 
outlying effect. And if last two outlying effects 
happens to be identical then this shows that the 
two maximas intercept at an a value for which all 
the other maximas are lesser. And this is the axial 
distance for which minimax designs are defined. 
For the CCD(22,a,2);  
 

• there does not exist any single a for 
which all the outlying effects happens to 

be identical,   

• there does exist many a for which at 
least two outlying effects are identical, 
like at a 1.11382, both  ff and fa are 
identical, at a = 1.41421 ff and aa are 
identical, etc. The Table 2 lists all such 
values of a where some outlying effects 
are identical.  

  
However, the minimax designs are looking for an 
a, as per second situation discussed above, for 
which, as many as possible, outlying effects are 
identical while all remainings are lesser. This 

occurs at a = 1.58563 for a CCD(22,a,2). So 
CCD(22,1.58563,2) is an outlier robust design 
with 2 factors. 
 
A similar exercise can be made for other choices 
of factors, and of their replications. The 
Mathematica code given in Appendix A is capable 
enough to develop outlier robust designs for 
almost all possible choices of number of factors, 
design structures like full or fractional, central 
points, and their replications. Table 3 shows 
these designs for a few such options. 
 
Comparisons 
 
An attempt is made here to compare these 
minimax designs with a few already exists 
established designs, like 
 

1. Box and Draper (1975) Designs, 
2. Box and Hunter (1957) Rotatable 

Designs 
3. Geramita et al. (1976) Orthogonal 

Designs 
 
The comparison is made on the basis of design’s 
alphabetic optimalities like 
 

• A which focuses in minimizing the 
average variance of the estimates of the 
response surface model’s coefficients, 
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• D which focuses in maximizing the 
differential Shannon (1948) information 
content of the parameter estimates 
including both of its versions; 

  
• main effect only,  
• squared effect only calculations, and 
• E which focuses on maximizing the 

minimum eigenvalue of the information 
matrix. 

 
More curious reader should refer to Atkinson et 
al. (2007), Kiefer (1985) for detailed and better 
understanding of these design alphabetic 
optimalities. Table 3 shows the results of this 
comparison where the outlier robust designs are 
compared with these designs. The Mathematica 
code given in Appendix A is used to generate all 
these outlier robust designs and the 
corresponding comparisons.

 
Table 3. Comparison of Minimax Designs with Other Designs 

 

Design  Rotatable Orthogonal BD MinMax 
CCD(22, a, 2) a 1.41421 0.413812 1.41421 1.58434 
Factorial=4 x 1 A-optimality 1.4375 18.183 1.4375 1.25805 
Axial=4 x 1 D-optimality 0.00001526 0.0052729 0.00001526 5.6329x10-6 
Central=2 Dmain 0.015625 0.0530303 0.015625 0.0122902 
Total=10 Dsqre 0.0078125 2.1159 0.0078125 0.00385188 

 E-optimality 0.772022 17.0513 0.772022 0.67263 

CCD(2A,a,2) a 1.68179 0.332478 1.79999 2.0688 
Factorial=8 x 1 A-optimality 1.41557 82.7971 1.34838 1.13038 
Axial=6 x 1 D-optimality 3.7221 x 10-11 0.000032403 1.6054 xlO-11 2.172 x 10-12 
Central=2 Dmain 0.000392598 0.00179975 0.000329384 0.000220206 
Total=16 Dsqre 0.0000976563 69.6923 0.0000504226 0.0000122875 

 E-optimality 0.677562 40.9184 0.654114 0.506229 

CCD( 23,a,2) a 2. 0.330012 1.41935 1.38795 
Factorial=8 x 2 A-optimality 0.916667 84.8812 1.14273 1.1457 
Axial=6 x 1 D-optimality 8.9826 xl0-14 2.7979x 10-7 3.2180x 10-12 3.8340 xl0“12 
Central=2 Dmain 0.000072338 0.000234435 0.000124455 0.000127801 
Total=24 Dsqre 0.000012207 37.0039 0.00027047 0.000327538 

 E-optimality 0.531874 42.1553 0.546279 0.524726 

CCD( 23,a,2) a 1.68179 0.274548 2.10957 1.95542 
Factorial=8 x 1 A-optimality 1.28345 88.882 0.973953 1.09769 
Axial=6 x 2 D-optimality 2.3441 xl0“12 0.000020543 6.6191 x 10-14 2.4201 xl0“13 
Central=2 Dmain 0.000138804 0.00174795 0.0000582218 0.0000791102 
Total=22 Dsqre 0.0000174386 80.595 1.5437x10-6 3.5449x10“® 

 E-optimality 0.677552 44.0013 0.449302 0.549965 

CCD( 23,a,2) a 2. 0.26814 2.03969 2.1638 
Factorial=8 x 2 A-optimality 0.805556 97.2141 0.767485 0.662901 
Axial=6 x 2 D-optimality 6.3159x 10-15 2.0495x 10-7 4.5674 xl0“15 1.6756x 10-15 
Central=2 Dmain 0.0000305176 0.000231435 0.0000287536 0.0000238759 
Total=30 Dsqre 2.1798x10-6 48.7032 1.7795x10-6 9.5856x 10-7 

 E-optimality 0.48591 48.3607 0.452294 0.360068 

CCD(23“1,a, 2) a 1.41421 0.336822 1.54038 1.34512 
Factorial=4 x 1 A-optimality 3.16667 105.154 2.90189 3.3442 
Axial=3 x 2 D-optimality 7.9472x 10-8 22.2544 2.3217 x 10-8 1.5880x 10-7 
Central=2 Dmain 0.00195312 0.0132414 0.001495 0.00226132 
Total=12 Dsqre 0.00078125 125.495 0.000339083 0.0012577 

 E-optimality 0.654508 38.848 0.680328 0.704644 

CCD( 24,a,2) a 2. 0.279624 2. 2.31839 
Factorial=16 x 1 A-optimality 1.27083 246.123 1.27083 1.06249 
Axial=8 x 1 D-optimality 2.8555x 10_2° 7.7160x 10_1° 2.8555x 10_2° 1.9848x 10-21 
Central=2 Dmain 3.0140x10-® 0.0000146765 3.0140x10-® 1.9530x10-® 
Total=26 Dsqre 3.1789x 10-7 8545.98 3.1789x 10-7 4.2569x 10-8 

 E-optimality 0.627111 81.7853 0.627111 0.479169 
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CCD(2b, a, 2) a 2.37841 0.244901 2.02905 1.46112 
Factorial=32 x 1 A-optimality 1.05392 556.566 1.0983 1.13595 
Axial=10 x 1 D-optimality 7.3012x 10-34 5.1530x 10-18 1.4572x 10-32 2.3734 x10-30 
Central=2 Dmain 6.559x 10-9 2.9249x 10-8 9.4847 x 10-9 1.5932x 10-8 
Total=44 Dsqre 2.6609x 10_1° 2.3328x10-9 3.9048x 10-9 8.5649x 10-7 

 E-optimality 0.559727 138.997 0.539294 0.241989 

 
Different choices of the number of factors, the 
design structure; either full or fractional, their 
replications are explored, just to save the space 
and show the optimalities, the newly generated 
outlier robust designs have managed to attain. 
While for each design, an a is calculated as per 
the description of the design. And, then values 
are calculated for different optimalities criteria. 
Lesser the value of these optimality criteria 
better the design be. 
 
As per the literature, and the expressions given 
in Atkinson et al. (2007) a design with smaller 
optimality coefficient is considered to be more 
optimal. A closer look in these values, reveal the 
optimality of outlier robust designs in almost 
every configuration and structure. As a matter of 
fact, the outlier robust designs are 30% to 50% 
more efficient to these designs. 
 
Concluding Remarks 
 
Outliers have always been the problem set of 
points in almost all domains of statistical analysis. 
Different approaches are available in academic 
statistical literature to tackle their negative 
effects. Typically, analysts use to delete these 
observations by labeling them as erroneous or 
typo. However, such an approach is not 
welcoming, especially in the domain of 
experimental design, where each and every 
observation corresponds to a specific design 
point. Another approach is to accommodate 
such points but after down-weighing their 
outlying effects. This assures the presence of 
these points in the analysis, while minimizing 
their negative effects. 
 
The same accommodative approach is used in 
this paper by introducing a new type of designs, 
that are robust in nature, and attempt to 
minimize the maximum outlying effect of design 
points. It derives the expressions to calculate 
these outlying effects by using a version Fisher’s 
information matrix. Then it employs a non linear 
programming scheme to minimize maximum 
outlying effects. It also compares these Minimax 
designs with Box and Draper (1975) Designs, 
Box and Hunter (1957) Rotatable Designs, and 
Geramita et al. (1976) Orthogonal Designs, by 

using alphabetic optimalities like A, D, and E. It 
turns out that Minimax designs are more optimal 
as compared to these aforementioned designs 
for almost all choices of factors, design 
structures; either full or fractional, and their 
replications. 
 
The Minimax designs developed here in this 
paper are capable enough to accomodate a pair 
of outliers only. However the methodology may 
be extended for more outliers. They are robust, 
that is, outliers cannot disturb or belittle their 
desirable design properties, like optimalitity, etc. 
The paper uses a Mathematica code, given in 
Appendix A to facilitate different derivations and 
calculations involved in the development of these 
Minimax designs. Even a high performance 
computer (Intel’s 6th Generation i7 with 16 GB 
RAM) takes lengthy durations for the 
development of these designs. However better 
programming skills may reduce these lengthy 
durations. 
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Mathematica Code 

 
Clear["Global'*"] 
{fact,rns,rf,ra,cent}={2,4,1,1,2}; 

d={"1","a","b","ab","c","ac","bc","abc"}; 

Print["Outlier Robust Center Composite Designs ; Single Outlier Case"] 

Print["Basic Design = 2^"<>ToString[fact]<>" in "<>ToString[rns]<>" runs"] 

Print["Design Pts. =",d] 

Print["2nd order RSCCD = factorial x "<>ToString[rf]<>", axial x "<>ToString[ra]<>", center pts. x 

"<>ToString[cent]] 

{w,ax,des,rows,col}={1,2 fact,rns+2 fact+cent,rns rf+2 fact ra+cent,(fact+1) (fact+2)/2}; 
{t,q}={2 fact ra+cent,((rns rf+t)^.5-(rns rf)^.5)^2}; 

x=Array[ds,{des,col}]; 

Do[ds[i,j]=0,{j,col},{i,rows}] 

Do[ds[i,1]=1,{i,rows}] 
Do[rn=d[[i]]; 

k=1; 

Do[If[StringTake[rn,{k}]==FromCharacterCode[95+j],ds[i,j]=1; 

k++; 
If[StringLength[rn]<k,rn=rn<>"z"],ds[i,j]=-1],{j,2,fact+1}],{i,rns}] 

Do[w++;Do[If[j==w,ds[i,j]=a; 

ds[i+1,j]=-a,ds[i,j]=0; 

ds[i+1,j]=0],{j,2,fact+1}],{i,rns+1,rns+ax,2}] 
Do[ds[i,j]=ds[i,j-fact]^2,{j,fact+2,ax+1},{i,des}] 

Do[t1=2; 

t2=t1+1; 

Do[ds[i,j]=ds[i,t1] ds[i,t2]; 
t2++; 

If[t2>fact+1,t1++;t2=t1+1],{j,ax+2,col}],{i,des}] Do[Do[f=x[[i]]; 

AppendTo[x,Flatten[f]],{i,rns}],{j,2,rf}] 

Do[Do[f=x[[rns+i]]; 
AppendTo[x,Flatten[f]],{i,ax}],{j,2,ra}] 

Print[MatrixForm[x]] 

xxi=Inverse[Transpose[x].x]; 

hat=x.xxi.Transpose[x]; 
wgt2[dp1_,dp2_]:=1-(1-hat[[dp1,dp1]]) (1-hat[[dp2,dp2]])+hat[[dp1,dp2]]^2; 

tm=0;Do[t=wgt2[1,i]/.a->1; 

if[t>tm,tm=t;ff=i],{i,1,rns}]; 

tm=0;Do[t=wgt2[1,i]/.a->1; 
if[t>tm,tm=t;fa=i],{i,rns+1,rns+ax}]; 

tm=0;Do[t=wgt2[1,i]/.a->1; 

if[t>tm,tm=t;fc=i],{i,rns+ax+1,des}]; 
tm=0;Do[t=wgt2[(rns+1),i]/.a->1; 

if[t>tm,tm=t;aa=i],{i,rns+2,rns+ax}]; 

tm=0;Do[t=wgt2[(rns+1),i]/.a->1; 

if[t>tm,tm=t;ac=i],{i,rns+ax+1,des}]; 
tm=0;Do[t=wgt2[(rns+ax+1),i]/.a->1; 

if[t>tm,tm=t;cc=i],{i,rns+ax+2,des}]; 

Plot[{wgt2[1,ff],wgt2[1,fa],wgt2[1,fc],wgt2[rns+1,aa],wgt2[rns+1,ac],wgt2[rns+ax+1,cc]},{a,0,3},PlotLegends-

>LineLegend["Expressions"]] 
{desp[1],desp[2],desp[3],desp[4],desp[5],desp[6]}={wgt2[1,ff],wgt2[1,fa],wgt2[1,fc],wgt2[rns+1,aa],wgt2[rns+1

,ac],wgt2[rns+ax+1,cc]}; 

{ord2,oeff}={0,10}; 

Do[Do[solv=a/.NSolve[desp[i]-desp[j]==0,a]; 
Do[If[Re[solv[[k]]]==solv[[k]]&&solv[[k]]>0,tsol=Sort[Table[desp[u]/.a->solv[[k]],{u,6}]]; 

If[tsol[[5]]==tsol[[6]]&&tsol[[5]]<oeff,ord2=solv[[k]]; 

oeff=tsol[[6]]]],{k,Length[solv]}],{j,(i+1),6}],{i,5}] 

Print["ORD2 is observed at a = ",ord2," where the outlying effect is ",oeff," which is minimum."] 
Print[MatrixForm[x/.a->ord2]] 

var=Variance[Flatten[Table[wgt2[i,j],{i,1,(rows-1)},{j,(i+1),rows}]]]; 

bd2=a/.Last[NMinimize[var,a>0,a]] 

Print["BD2 is observed at a = ",bd2," where the variance is ",var/.a->bd2," which is minimum."] 

Plot[var,{a,0,3}] 

orth=N[(q*rns*rf/4)^0.25]; 
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Print["Orthogonal Design is observed at a =",orth] 

rot=N[(rns*rf)^0.25]; 

Print["Rotatable Design is observed at a =",rot] 
aop=Sum[xxi[[i,i]],{i,col}]; 

dop=Det[xxi]; 

dm=Det[Inverse[Transpose[x][[Range[2,fact+1]]].Transpose[Transpose[x][[Range[2,fact+1]]]]]]; 

ds=Det[Inverse[Transpose[x][[Range[2+fact,2*fact+1]]].Transpose[Transpose[x][[Range[2+fact,2*fact+1]]]]]]; 
eopt=Max[Eigenvalues[xxi]]; 

t={{" ","Rotatable","Orthogonal","BD","MinMax"},{"alpha",rot,orth,bd2,ord2},{"A-optimality",aop/.a-

>rot,aop/.a->orth,aop/.a->bd2,aop/.a->ord2},{"D-optimality",dop/.a->rot,dop/.a->orth,dop/.a->bd2,dop/.a->ord2},{" 

Dmain",dm/.a->rot,dm/.a->orth,dm/.a->bd2,dm/.a->ord2},{" Dsqre",ds/.a->rot,ds/.a->orth,ds/.a->bd2,ds/.a-
>ord2},{"E-optimality",eopt/.a->rot,eopt/.a->orth,eopt/.a->bd2,eopt/.a->ord2}}; 

Print["The Analysis"] 

Print[TableForm[t]] 

TeXForm[TableForm[t]] 
 
  


